Skip to main content

Advertisement

Log in

Rhesus monkey TRIM5α represses HIV-1 LTR promoter activity by negatively regulating TAK1/TAB1/TAB2/TAB3-complex-mediated NF-κB activation

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

TRIM5α has been identified as the main restriction factor responsible for resistance of Old World monkey cells to HIV-1 infection. The precise mechanism of viral inhibition by TRIM5α remains elusive but appears to occur in multiple ways. Here, we report that rhesus monkey TRIM5α (TRIM5αrh) can represses HIV-1 LTR promoter activity by negatively regulating TAK1/TAB1/TAB2/TAB3-complex-mediated NF-κB activation when TRIM5αrh is overexpressed. We show that the overexpressed TRIM5αrh can interact with the TAK1/TAB1/TAB2/TAB3 complex by binding to TAB1 and promotes the degradation of TAB2 within the complex via the lysosomal degradation pathway. Subsequently, TRIM5αrh lowers the IKKα protein level and inhibits NF-κB p65 phosphorylation, and knockdown of TRIM5αrh expression by small interfering RNA in TRIM5αrh-overexpressing cells can abolish this inhibition. Finally, the inhibition of p65 phosphorylation results in the repression of HIV-1 LTR promoter activity. Taken together, these findings indicate that TRIM5αrh plays a previously unrecognized role in repressing HIV-1 transcription by inhibiting TAK1/TAB1/TAB2/TAB3-complex-mediated NF-κB activation when TRIM5αrh is overexpressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59:284–291

    PubMed  CAS  Google Scholar 

  2. Akira S (2006) TLR signaling. Curr Topics microbiol immunol 311:1–16

    Article  CAS  Google Scholar 

  3. Anderson JL, Campbell EM, Wu X, Vandegraaff N, Engelman A, Hope TJ (2006) Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins. J Virol 80:9754–9760

    Article  PubMed  CAS  Google Scholar 

  4. Berube J, Bouchard A, Berthoux L (2007) Both TRIM5alpha and TRIMCyp have only weak antiviral activity in canine D17 cells. Retrovirology 4:68

    Article  PubMed  Google Scholar 

  5. Campbell KJ, Perkins ND (2004) Post-translational modification of RelA(p65) NF-kappaB. Biochem Soc Transact 32:1087–1089

    Article  CAS  Google Scholar 

  6. Chatterji U, Bobardt MD, Gaskill P, Sheeter D, Fox H, Gallay PA (2006) Trim5alpha accelerates degradation of cytosolic capsid associated with productive HIV-1 entry. J Biol Chem 281:37025–37033

    Article  PubMed  CAS  Google Scholar 

  7. Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science (New York, NY 296:1634–1635

    Article  CAS  Google Scholar 

  8. Cheung PC, Nebreda AR, Cohen P (2004) TAB3, a new binding partner of the protein kinase TAK1. Biochem J 378:27–34

    Article  PubMed  CAS  Google Scholar 

  9. Connor RI, Chen BK, Choe S, Landau NR (1995) Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 206:935–944

    Article  PubMed  CAS  Google Scholar 

  10. Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351–361

    Article  PubMed  CAS  Google Scholar 

  11. Faustman D, Davis M (2010) TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev 9:482–493

    Article  CAS  Google Scholar 

  12. Heller RA, Kronke M (1994) Tumor necrosis factor receptor-mediated signaling pathways. J Cell Biol 126:5–9

    Article  PubMed  CAS  Google Scholar 

  13. Hiscott J, Kwon H, Genin P (2001) Hostile takeovers: viral appropriation of the NF-kappaB pathway. J Clin Investig 107:143–151

    Article  PubMed  CAS  Google Scholar 

  14. Ishida T, Mizushima S, Azuma S, Kobayashi N, Tojo T, Suzuki K, Aizawa S, Watanabe T, Mosialos G, Kieff E, Yamamoto T, Inoue J (1996) Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J Biol Chem 271:28745–28748

    Article  PubMed  CAS  Google Scholar 

  15. Jiang X, Takahashi N, Matsui N, Tetsuka T, Okamoto T (2003) The NF-kappa B activation in lymphotoxin beta receptor signaling depends on the phosphorylation of p65 at serine 536. J Biol Chem 278:919–926

    Article  PubMed  CAS  Google Scholar 

  16. Lawrence T, Bebien M, Liu GY, Nizet V, Karin M (2005) IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature 434:1138–1143

    Article  PubMed  CAS  Google Scholar 

  17. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev 2:725–734

    CAS  Google Scholar 

  18. Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145–151

    Article  PubMed  CAS  Google Scholar 

  19. Mattioli I, Sebald A, Bucher C, Charles RP, Nakano H, Doi T, Kracht M, Schmitz ML (2004) Transient and selective NF-kappa B p65 serine 536 phosphorylation induced by T cell costimulation is mediated by I kappa B kinase beta and controls the kinetics of p65 nuclear import. J Immunol 172:6336–6344

    PubMed  CAS  Google Scholar 

  20. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (1999) The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398:252–256

    Article  PubMed  CAS  Google Scholar 

  21. Pereira LA, Bentley K, Peeters A, Churchill MJ, Deacon NJ (2000) A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res 28:663–668

    Article  PubMed  CAS  Google Scholar 

  22. Perez-Caballero D, Hatziioannou T, Yang A, Cowan S, Bieniasz PD (2005) Human tripartite motif 5alpha domains responsible for retrovirus restriction activity and specificity. J Virol 79:8969–8978

    Article  PubMed  CAS  Google Scholar 

  23. Perron MJ, Stremlau M, Song B, Ulm W, Mulligan RC, Sodroski J (2004) TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc Natl Acad Sci U S A 101:11827–11832

    Article  PubMed  CAS  Google Scholar 

  24. Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J, Reinhard C, Santoni FA, Uchil PD, Chatel L, Bisiaux A, Albert ML, Strambio-De-Castillia C, Mothes W, Pizzato M, Grutter MG, Luban J (2011) TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472:361–365

    Article  PubMed  CAS  Google Scholar 

  25. Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, Guffanti A, Minucci S, Pelicci PG, Ballabio A (2001) The tripartite motif family identifies cell compartments. EMBO J 20:2140–2151

    Article  PubMed  CAS  Google Scholar 

  26. Roulston A, Lin R, Beauparlant P, Wainberg MA, Hiscott J (1995) Regulation of human immunodeficiency virus type 1 and cytokine gene expression in myeloid cells by NF-kappa B/Rel transcription factors. Microbiol Rev 59:481–505

    PubMed  CAS  Google Scholar 

  27. Sakuma R, Noser JA, Ohmine S, Ikeda Y (2007) Rhesus monkey TRIM5alpha restricts HIV-1 production through rapid degradation of viral Gag polyproteins. Nat Med 13:631–635

    Article  PubMed  CAS  Google Scholar 

  28. Sakuma R, Ohmine S, Ikeda Y (2010) Determinants for the rhesus monkey TRIM5alpha-mediated block of the late phase of HIV-1 replication. J Biol Chem 285:3784–3793

    Article  PubMed  CAS  Google Scholar 

  29. Sakurai H, Miyoshi H, Mizukami J, Sugita T (2000) Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1. FEBS Lett 474:141–145

    Article  PubMed  CAS  Google Scholar 

  30. Sakurai H, Nishi A, Sato N, Mizukami J, Miyoshi H, Sugita T (2002) TAK1-TAB1 fusion protein: a novel constitutively active mitogen-activated protein kinase kinase kinase that stimulates AP-1 and NF-kappaB signaling pathways. Biochem Biophys Res Commun 297:1277–1281

    Article  PubMed  CAS  Google Scholar 

  31. Sakurai H, Suzuki S, Kawasaki N, Nakano H, Okazaki T, Chino A, Doi T, Saiki I (2003) Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem 278:36916–36923

    Article  PubMed  CAS  Google Scholar 

  32. Shi M, Deng W, Bi E, Mao K, Ji Y, Lin G, Wu X, Tao Z, Li Z, Cai X, Sun S, Xiang C, Sun B (2008) TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation. Nat Immunol 9:369–377

    Article  PubMed  CAS  Google Scholar 

  33. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K (1996) TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science (New York, NY) 272:1179–1182

    Article  CAS  Google Scholar 

  34. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427:848–853

    Article  PubMed  CAS  Google Scholar 

  35. Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, Diaz-Griffero F, Anderson DJ, Sundquist WI, Sodroski J (2006) Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci USA 103:5514–5519

    Article  PubMed  CAS  Google Scholar 

  36. Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, Matsumoto K (2000) TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol cell 5:649–658

    Article  PubMed  CAS  Google Scholar 

  37. Takaesu G, Surabhi RM, Park KJ, Ninomiya-Tsuji J, Matsumoto K, Gaynor RB (2003) TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J Mol Biol 326:105–115

    Article  PubMed  CAS  Google Scholar 

  38. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    Article  PubMed  CAS  Google Scholar 

  39. Tareen Semih U, Emerman M (2011) Human Trim5α has additional activities that are uncoupled from retroviral capsid recognition. Virology 409:119–120

    Article  Google Scholar 

  40. Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr (1999) Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 5:412–417

    Article  PubMed  Google Scholar 

  41. Wu X, Anderson JL, Campbell EM, Joseph AM, Hope TJ (2006) Proteasome inhibitors uncouple rhesus TRIM5alpha restriction of HIV-1 reverse transcription and infection. Proc Natl Acad Sci USA 103:7465–7470

    Article  PubMed  CAS  Google Scholar 

  42. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science (New York, NY) 270:2008–2011

    Article  CAS  Google Scholar 

  43. Yamauchi K, Wada K, Tanji K, Tanaka M, Kamitani T (2008) Ubiquitination of E3 ubiquitin ligase TRIM5 alpha and its potential role. FEBS J 275:1540–1555

    Article  PubMed  CAS  Google Scholar 

  44. Yoshimi R, Chang TH, Wang H, Atsumi T, Morse HC 3rd, Ozato K (2009) Gene disruption study reveals a nonredundant role for TRIM21/Ro52 in NF-kappaB-dependent cytokine expression in fibroblasts. J Immunol 182:7527–7538

    Article  PubMed  CAS  Google Scholar 

  45. Zha J, Han KJ, Xu LG, He W, Zhou Q, Chen D, Zhai Z, Shu HB (2006) The Ret finger protein inhibits signaling mediated by the noncanonical and canonical IkappaB kinase family members. J Immunol 176:1072–1080

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hong-Bing Shu (Wuhan University, Wuhan, China) for providing the Flag-TAB2 and Flag-TAB3 plasmids, Dr. Zheng-Li Shi (Wuhan Institute of Virology, CAS, Wuhan, China) for providing pVpack-GP and pVpack-VSV-G plasmids, Dr. Qun-Yuan Xu (Capital Medical University, Beijing, China) for providing the pLPCX plasmid, Prof. Tian-Xian Li (Wuhan Institute of Virology, CAS, Wuhan, China) for providing the marmoset B-lymphoblastoid (B95-8) and fetal rhesus monkey kidney (FRhk-4) cell lines. This work was supported by a grant of the Key Projects in the National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period of China (2008ZX10001-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Ge Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, J., Shen, XH., Qiu, H. et al. Rhesus monkey TRIM5α represses HIV-1 LTR promoter activity by negatively regulating TAK1/TAB1/TAB2/TAB3-complex-mediated NF-κB activation. Arch Virol 156, 1997–2006 (2011). https://doi.org/10.1007/s00705-011-1097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-1097-6

Keywords

Navigation