Skip to main content

Advertisement

Log in

Vascular permeability in ocular disease and the role of tight junctions

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Vascular permeability is closely linked with angiogenesis in a number of pathologies. In the retina, the normally well-developed blood-retinal barrier is altered in a host of eye diseases preceding or commensurate with angiogenesis. This review examines the literature regarding the tight junction complex that establishes the blood-retinal barrier focusing on the transmembrane proteins occludin and the claudin family and the membrane associated protein zonula occludens. The changes observed in these proteins associated with vascular and epithelial permeability is discussed. Finally, novel literature addressing the link between the tight junction complex and angiogenesis is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ruiter DJ, Schlingemann RO, Westphal JR, Denijn M, Rietveld FJ, De Waal RM (1993) Angiogenesis in wound healing and tumor metastasis. Behring Inst Mitt 92:258–272

    PubMed  CAS  Google Scholar 

  2. Paavonen K, Puolakkainen P, Jussila L, Jahkola T, Alitalo K (2000) Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol 156:1499–1504

    PubMed  CAS  Google Scholar 

  3. Yano K, Brown LF, Detmar M (2001) Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest 107:409–417

    PubMed  CAS  Google Scholar 

  4. Ferrara N, Chen H, Davis-Smyth T, Gerber HP, Nguyen TN, Peers D, Chisholm V, Hillan KJ, Schwall RH (1998) Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med 4:336–340

    Article  PubMed  CAS  Google Scholar 

  5. Witmer AN, Vrensen GFJM, Van Noorden CJF, Schlingemann RO (2003) Vascular endothelial growth factors and angiogenesis in eye disease. Prog Ret Eye Res 22:1–29

    Article  CAS  Google Scholar 

  6. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  7. Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovascular Res 49:507–521

    Article  CAS  Google Scholar 

  8. Bill A (1975) Blood circulation and fluid dynamics in the eye. Physiol Rev 55:383–417

    PubMed  CAS  Google Scholar 

  9. Zhang HR (1994) Scanning electron-microscopic study of corrosion casts on retinal and choroidal angioarchitecture in man and animals. Prog Ret Eye Res 13:243–270

    Article  Google Scholar 

  10. Hayreh SS (1975) Segmental nature of the choroidal vasculature. Br J Ophthalmol 59:631–648

    PubMed  CAS  Google Scholar 

  11. Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW (2002) Diabetic retinopathy: more than meets the eye. Survey Ophthalmol 47:S253–S262

    Article  Google Scholar 

  12. Darlow BA, Hutchinson JL, Henderson-Smart DJ, Donoghue DA, Simpson JM, Evans NJ, and on behalf of the Australian and New Zealand Neonatal Network (2005) Prenatal risk factors for severe retinopathy of prematurity among very preterm infants of the Australian and New Zealand Neonatal Network. Pediatrics 115:990–996

    Google Scholar 

  13. Chye JK, Lim CT, Leong HL, Wong PK (1999) Retinopathy of prematurity in very low birth weight infants. Ann Acad Med Singapore 28:193–198

    PubMed  CAS  Google Scholar 

  14. Gaugler C, Beladdale J, Astruc D, Schaeffer D, Donato L, Speeg-Schatz CS, Simeoni U, Messer J (2002) Retinopathy of prematurity: 10-year retrospective study at the University hospital of Strasbourg. Arch Pediatr 9:350–357

    Article  PubMed  CAS  Google Scholar 

  15. Hussain N, Clive J, Bhandari V (1999) Current incidence of retinopathy of prematurity, 1989–1997. Pediatrics 104:e26

    Article  PubMed  CAS  Google Scholar 

  16. Zhang S, Leske D, Holmes J (2000) Neovascularization grading methods in a rat model of retinopathy of prematurity. IOVS 41:887–891

    CAS  Google Scholar 

  17. Group TEDPR (2004) Prevalence of age-related macular degeneration in the United States. Archiv of Opthal 122:564–572

    Article  Google Scholar 

  18. Klein R, Klein BE, Linton KL (1992) Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 99:933–943

    PubMed  CAS  Google Scholar 

  19. Mitchell P, Smith W, Attebo K, Wang JJ (1995) Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. Ophthalmology 102:1450–1460

    PubMed  CAS  Google Scholar 

  20. Vingerling JR, Dielemans I, Hofman A, Grobbee DE, Hijmering M, Kramer CF, de Jong PT (1995) The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology 102:205–210

    PubMed  CAS  Google Scholar 

  21. Group MP (1997) Risk factors for choroidal neovascularization in the second eye of patients with juxtafoveal or subfoveal choroidal neovascularization secondary to age-related macular degeneration. Macular Photocoagulation Study Group. Arch Ophthalmol 115:741–747

    Google Scholar 

  22. Krishnaiah S, Das T, Nirmalan PK, Nutheti R, Shamanna BR, Rao GN, Thomas R (2005) Risk factors for age-related macular degeneration: findings from the Andhra Pradesh Eye Disease Study in South India. Invest Ophthalmol Vis Sci 46:4442–4449

    Article  PubMed  Google Scholar 

  23. Pieramici DJ, Bressler SB (1998) Age-related macular degeneration and risk factors for the development of choroidal neovascularization in the fellow eye. Curr Opin Ophthalmol 9:38–46

    Article  PubMed  CAS  Google Scholar 

  24. US Department of Health and Human Services, N., NEI (2006) Diabetic retinopathy: what you should know. 3–4

  25. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487

    Article  PubMed  CAS  Google Scholar 

  26. Antonetti D, Barber A, Khin S, Lieth E, Tarbell J, Gardner T (1998) Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes 47:1953–1959

    Article  PubMed  CAS  Google Scholar 

  27. Behzadian MA, Windsor LJ, Ghaly N, Liou G, Tsai N-t, Caldwell RB (2003) VEGF-induced paracellular permeability in cultured endothelial cells involves urokinase and its receptor. FASEB J:02–0484fje

  28. Boulton M, Foreman D, Williams G, McLeod D (1998) VEGF localization in diabetic retinopathy. Br J Ophthalmol 82:561–568

    Article  PubMed  CAS  Google Scholar 

  29. Mathews MK, Merges C, McLeod DS, Lutty GA (1997) Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy. Invest Ophthalmol Vis Sci 38:2729–2741

    PubMed  CAS  Google Scholar 

  30. Ciulla TA, Amador AG, Zinman B (2003) Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies. Diabetes Care 26:2653–2664

    Article  PubMed  Google Scholar 

  31. Study TETDR (1985) Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Early treatment diabetic retinopathy study research group. Arch Ophthalmol 103:1796–1806

    Google Scholar 

  32. Antonetti DA, Barber AJ, Bronson SK, Freeman WM, Gardner TW, Jefferson LS, Kester M, Kimball SR, Krady JK, LaNoue KF et al (2006) Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55:2401–2411

    Article  PubMed  CAS  Google Scholar 

  33. Knudsen L, Lervang H, Lundbye-Christensen S, Gorst-Rasmussen A (2006) The North Jutland County Diabetic Retinopathy study population characteristics. Br J Ophthalmol 90:1404–1409

    Article  PubMed  CAS  Google Scholar 

  34. Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126:741–754

    Article  PubMed  CAS  Google Scholar 

  35. Suzuki A, Ohno S (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119:979–987

    Article  PubMed  CAS  Google Scholar 

  36. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412

    Article  PubMed  CAS  Google Scholar 

  37. Goodenough DA, Revel JP (1970) A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol 45:272–290

    Article  PubMed  CAS  Google Scholar 

  38. Staehelin LA (1973) Further observations on the fine structure of freeze-cleaved tight junctions. J Cell Sci 13:763–786

    PubMed  CAS  Google Scholar 

  39. Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Progr Biophy Mol Biol 81:1–44

    Article  CAS  Google Scholar 

  40. Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA (1986) Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. Journal of Cell Biology 103:755–766

    Article  PubMed  CAS  Google Scholar 

  41. Gumbiner B, Lowenkopf T, Apatira D (1991) Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. PNAS 88:3460–3464

    Article  PubMed  CAS  Google Scholar 

  42. Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S (1999) Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 147:1351–1363

    Article  PubMed  CAS  Google Scholar 

  43. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753

    Article  PubMed  CAS  Google Scholar 

  44. Itoh M, Morita K, Tsukita S (1999) Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha-catenin. J Biol Chem 274:5981–5986

    Article  PubMed  CAS  Google Scholar 

  45. Schmidt A, Utepbergenov DI, Mueller SL, Beyermann M, Schneider-Mergener J, Krause G, Blasig IE (2004) Occludin binds to the SH3-hinge-GuK unit of zonula occludens protein 1: potential mechanism of tight junction regulation. Cell Mol Life Sci 61:1354–1365

    Article  PubMed  CAS  Google Scholar 

  46. Imamura Y, Itoh M, Maeno Y, Tsukita S, Nagafuchi A (1999) Functional domains of alpha -catenin required for the strong state of cadherin-based cell adhesion. J Cell Biol 144:1311–1322

    Article  PubMed  CAS  Google Scholar 

  47. Yamamoto T, Harada N, Kano K, Taya S-i, Canaani E, Matsuura Y, Mizoguchi A, Ide C, Kaibuchi K (1997) The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J Cell Biol 139:785–795

    Article  PubMed  CAS  Google Scholar 

  48. Itoh M, Nagafuchi A, Moroi S, Tsukita S (1997) Involvement of ZO-1 in cadherin-based cell adhesion through Its direct binding to alpha-catenin and actin filaments. J Cell Biol 138:181–192

    Article  PubMed  CAS  Google Scholar 

  49. Muller SL, Portwich M, Schmidt A, Utepbergenov DI, Huber O, Blasig IE, Krause G (2005) The tight junction protein occludin and the adherens junction protein {alpha}-catenin share a common interaction mechanism with ZO-1. J Biol Chem 280:3747–3756

    Article  PubMed  CAS  Google Scholar 

  50. McNeil E, Capaldo CT, Macara IG (2006) Zonula occludens-1 function in the assembly of tight junctions in Madin-Darby canine kidney epithelial cells. Mol Biol Cell 17:1922–1932

    Article  PubMed  CAS  Google Scholar 

  51. Umeda K, Matsui T, Nakayama M, Furuse K, Sasaki H, Furuse M, Tsukita S (2004) Establishment and characterization of cultured epithelial cells lacking expression of ZO-1. J Biol Chem 279:44785–44794

    Article  PubMed  CAS  Google Scholar 

  52. Utepbergenov DI, Fanning AS, Anderson JM (2006) Dimerization of the scaffolding protein ZO-1 through the second PDZ domain. J Biol Chem 281:24671–24677

    Article  PubMed  CAS  Google Scholar 

  53. Fischer S, Wobben M, Marti HH, Renz D, Schaper W (2002) Hypoxia-Induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvascular Res 63:70–80

    Article  CAS  Google Scholar 

  54. Jin M, Barron E, He S, Ryan SJ, Hinton DR (2002) Regulation of RPE intercellular junction integrity and function by hepatocyte growth factor. Invest Ophthalmol Vis Sci 43:2782–2790

    PubMed  Google Scholar 

  55. DeMaio L, Chang YS, Gardner TW, Tarbell JM, Antonetti DA (2001) Shear stress regulates occludin content and phosphorylation. Am J Physiol Heart Circ Physiol 281:H105–H113

    PubMed  CAS  Google Scholar 

  56. Sill HW, Chang YS, Artman JR, Frangos JA, Hollis TM, Tarbell JM (1995) Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am J Physiol Heart Circ Physiol 268:H535–H543

    CAS  Google Scholar 

  57. DeMaio L, Tarbell JM, Scaduto RC Jr, Gardner TW, Antonetti DA (2004) A transmural pressure gradient induces mechanical and biological adaptive responses in endothelial cells. Am J Physiol Heart Circ Physiol 286:H731–H741

    Article  PubMed  CAS  Google Scholar 

  58. Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143:391–401

    Article  PubMed  CAS  Google Scholar 

  59. Morita K, Sasaki H, Fujimoto K, Furuse M, Tsukita S (1999) Claudin-11/OSP-based tight junctions of myelin sheaths in brain and sertoli cells in testis. J Cell Biol 145:579–588

    Article  PubMed  CAS  Google Scholar 

  60. Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194

    Article  PubMed  CAS  Google Scholar 

  61. Tsukita S, Furuse M (1999) Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol 9:268–273

    Article  PubMed  CAS  Google Scholar 

  62. Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. PNAS 96:511–516

    Article  PubMed  CAS  Google Scholar 

  63. Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293

    Article  PubMed  CAS  Google Scholar 

  64. Turksen K, Troy T-C (2004) Barriers built on claudins. J Cell Sci 117:2435–2447

    Article  PubMed  CAS  Google Scholar 

  65. Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S (2002) Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem 277:455–461

    Article  PubMed  CAS  Google Scholar 

  66. Ponting CP, Phillips C, Davies KE, Blake DJ (1997) PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays 19:469–479

    Article  PubMed  CAS  Google Scholar 

  67. Ranganathan R, Ross EM (1997) PDZ domain proteins: scaffolds for signaling complexes. Current Biol 7:R770–R773

    Article  CAS  Google Scholar 

  68. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539–1550

    Article  PubMed  CAS  Google Scholar 

  69. Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147:891–903

    Article  PubMed  CAS  Google Scholar 

  70. Tsukita S, Furuse M (2000) Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J Cell Biol 149:13–16

    Article  PubMed  CAS  Google Scholar 

  71. Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153:263–272

    Article  PubMed  CAS  Google Scholar 

  72. Van Itallie CM, Fanning AS, Anderson JM (2003) Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. Am J Physiol Renal Physiol 285:F1078–F1084

    PubMed  Google Scholar 

  73. Hou J, Gomes AS, Paul DL, Goodenough DA (2006) Study of claudin function by RNA interference. J Biol Chem 281:36117–36123

    Article  PubMed  CAS  Google Scholar 

  74. Landau D (2006) Epithelial paracellular proteins in health and disease. Curr Opin Nephrol Hypertens 15:425–429

    Article  PubMed  CAS  Google Scholar 

  75. Mazzon E, Puzzolo D, Caputi AP, Cuzzocrea S (2002) Role of IL-10 in hepatocyte tight junction alteration in mouse model of experimental colitis. Mol Med 8:353–366

    PubMed  CAS  Google Scholar 

  76. Kausalya PJ, Amasheh S, Gunzel D, Wurps H, Muller D, Fromm M, Hunziker W (2006) Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest 116:878–891

    Article  PubMed  CAS  Google Scholar 

  77. Barber AJ, Antonetti DA (2003) Mapping the blood vessels with paracellular permeability in the retinas of diabetic rats. Invest Ophthalmol Vis Sci 44:5410–5416

    Article  PubMed  Google Scholar 

  78. Wen H, Watry DD, Marcondes MCG, Fox HS (2004) Selective decrease in paracellular conductance of tight junctions: role of the first extracellular domain of claudin-5. Mol Cell Biol 24:8408–8417

    Article  PubMed  CAS  Google Scholar 

  79. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  PubMed  CAS  Google Scholar 

  80. Rahner C, Fukuhara M, Peng S, Kojima S, Rizzolo LJ (2004) The apical and basal environments of the retinal pigment epithelium regulate the maturation of tight junctions during development. J Cell Sci 117:3307–3318

    Article  PubMed  CAS  Google Scholar 

  81. Xu H, Dawson R, Crane IJ, Liversidge J (2005) Leukocyte diapedesis in vivo induces transient loss of tight junction protein at the blood-retina barrier. Invest Ophthalmol Vis Sci 46:2487–2494

    Article  PubMed  Google Scholar 

  82. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A et al (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142:117–127

    Article  PubMed  CAS  Google Scholar 

  83. Kostrewa D, Brockhaus M, D’Arcy A, Dale GE, Nelboeck P, Schmid G, Mueller F, Bazzoni G, Dejana E, Bartfai T et al (2001) X-ray structure of junctional adhesion molecule: structural basis for homophilic adhesion via a novel dimerization motif. European Mol Biol Org J 20:4391–4398

    CAS  Google Scholar 

  84. Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S (2001) Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 154:491–498

    Article  PubMed  CAS  Google Scholar 

  85. Bazzoni G, Martinez-Estrada OM, Mueller F, Nelboeck P, Schmid G, Bartfai T, Dejana E, Brockhaus M (2000) Homophilic Interaction of junctional adhesion molecule. J Biol Chem 275:30970–30976

    Article  PubMed  CAS  Google Scholar 

  86. Liu Y, Nusrat A, Schnell F, Reaves T, Walsh S, Pochet M, Parkos C (2000) Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 113:2363–2374

    PubMed  CAS  Google Scholar 

  87. Palmeri D, van Zante A, Huang C-C, Hemmerich S, Rosen SD (2000) Vascular endothelial junction-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J Biol Chem 275:19139–19145

    Article  PubMed  CAS  Google Scholar 

  88. Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Inazawa J, Fujimoto K, Tsukita S (1997) Mammalian occludin in epithelial cells: its expression and subcellular distribution. Eur J Cell Biol 73:222–231

    PubMed  CAS  Google Scholar 

  89. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  PubMed  CAS  Google Scholar 

  90. Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, Yonemura S, Furuse M, Tsukita S (1996) Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol 133:43–47

    Article  PubMed  CAS  Google Scholar 

  91. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945

    Article  PubMed  CAS  Google Scholar 

  92. Traweger A, Fang D, Liu Y-C, Stelzhammer W, Krizbai IA, Fresser F, Bauer H-C, Bauer H (2002) The tight junction-specific protein occludin is a functional target of the E3 ubiquitin-protein ligase itch. J Biol Chem 277:10201–10208

    Article  PubMed  CAS  Google Scholar 

  93. Lui WY, Lee WM (2005) cAMP perturbs inter-sertoli tight junction permeability barrier in vitro via its effect on proteasome-sensitive ubiquitination of occludin. J Cellular Physiol 203:564–572

    Article  CAS  Google Scholar 

  94. Sanchez-Pulido L, Martin-Belmonte F, Valencia A, Alonso MA (2002) MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem Sci 27:599–601

    Article  PubMed  CAS  Google Scholar 

  95. Harhaj NS, Barber AJ, Antonetti DA (2002) Platelet-derived growth factor mediates tight junction redistribution and increases permeability in MDCK cells. J Cell Physiol 193:349–364

    Article  PubMed  CAS  Google Scholar 

  96. Ivanov AI, Nusrat A, Parkos CA (2005) Endocytosis of the apical junctional complex: mechanisms and possible roles in regulation of epithelial barriers. BioEssays 27:356–365

    Article  PubMed  CAS  Google Scholar 

  97. McKenzie JAG, Riento K, Ridley AJ (2006) Casein kinase I[epsilon] associates with and phosphorylates the tight junction protein occludin. FEBS Lett 580:2388–2394

    Article  PubMed  CAS  Google Scholar 

  98. Cordenonsi M, Turco F, D’atri F, Hammar E, Martinucci G, Meggio F, Citi S (1999) Xenopus laevis occludin. Identification of in vitro phosphorylation sites by protein kinase CK2 and association with cingulin. Eur J Biochem 264:374–384

    Article  PubMed  CAS  Google Scholar 

  99. Smales C, Ellis M, Baumber R, Hussain N, Desmond H, Staddon JM (2003) Occludin phosphorylation: identification of an occludin kinase in brain and cell extracts as CK2. FEBS Lett 545:161–166

    Article  PubMed  CAS  Google Scholar 

  100. Andreeva AY, Krause E, Muller E-C, Blasig IE, Utepbergenov DI (2001) Protein kinase C regulates the phosphorylation and cellular localization of occludin. J Biol Chem 276:38480–38486

    Article  PubMed  CAS  Google Scholar 

  101. Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127:1617–1626

    Article  PubMed  CAS  Google Scholar 

  102. Nusrat A, Chen JA, Foley CS, Liang TW, Tom J, Cromwell M, Quan C, Mrsny RJ (2000) The coiled-coil domain of occludin can act to organize structural and functional elements of the epithelial tight junction. J Biol Chem 275:29816–29822

    Article  PubMed  CAS  Google Scholar 

  103. Li Y, Fanning AS, Anderson JM, Lavie A (2005) Structure of the conserved cytoplasmic C-terminal domain of occludin: identification of the ZO-1 binding surface. J Mol Biol 352:151–164

    Article  PubMed  CAS  Google Scholar 

  104. Mitic LL, Schneeberger EE, Fanning AS, Anderson JM (1999) Connexin-occludin chimeras containing the ZO-binding domain of occludin localize at MDCK tight junctions and NRK cell contacts. J Cell Biol 146:683–693

    Article  PubMed  CAS  Google Scholar 

  105. Hirase T, Staddon J, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin L (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110:1603–1613

    PubMed  CAS  Google Scholar 

  106. Kevil CG, Okayama N, Trocha SD, Kalogeris TJ, Coe LL, Specian RD, Davis CP, Alexander JS (1998) Expression of zonula occludens and adherens junctional proteins in human venous and arterial endothelial cells: role of occludin in endothelial solute barriers. Microcirculation 5:197–210

    Article  PubMed  CAS  Google Scholar 

  107. Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141:397–408

    Article  PubMed  CAS  Google Scholar 

  108. Yu ASL, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Lynch RD, Schneeberger EE (2005) Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol 288:C1231–C1241

    Article  PubMed  CAS  Google Scholar 

  109. Balda M, Whitney J, Flores C, Gonzalez S, Cereijido M, Matter K (1996) Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical- basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134:1031–1049

    Article  PubMed  CAS  Google Scholar 

  110. McCarthy K, Skare I, Stankewich M, Furuse M, Tsukita S, Rogers R, Lynch R, Schneeberger E (1996) Occludin is a functional component of the tight junction. J Cell Sci 109:2287–2298

    PubMed  CAS  Google Scholar 

  111. Chehade JM, Haas MJ, Mooradian AD (2002) Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression. Neurochem Res V27:249–252

    Article  Google Scholar 

  112. Jin M, Chen Y, He S, Ryan SJ, Hinton DR (2004) Hepatocyte growth factor and its role in the pathogenesis of retinal detachment. Invest Ophthalmol Vis Sci 45:323–329

    Article  PubMed  Google Scholar 

  113. Antonetti DA, Wolpert EB, DeMaio L, Harhaj NS, Scaduto RCJ (2002) Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J Neurochem 80:667–677

    Article  PubMed  CAS  Google Scholar 

  114. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 274:23463–23467

    Article  PubMed  CAS  Google Scholar 

  115. Harhaj NS, Felinski EA, Wolpert EB, Sundstrom JM, Gardner TW, Antonetti DA (2006) VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest Ophthalmol Vis Sci 47:5106–5115

    Article  PubMed  Google Scholar 

  116. Hirase T, Kawashima S, Wong EYM, Ueyama T, Rikitake Y, Tsukita S, Yokoyama M, Staddon JM (2001) Regulation of tight junction permeability and occludin phosphorylation by RhoA-p160ROCK-dependent and -independent mechanisms. J Biol Chem 276:10423–10431

    Article  PubMed  CAS  Google Scholar 

  117. DeMaio L, Rouhanizadeh M, Reddy S, Sevanian A, Hwang J, Hsiai TK (2006) Oxidized phospholipids mediate occludin expression and phosphorylation in vascular endothelial cells. Am J Physiol Heart Circ Physiol 290:H674–H683

    Article  PubMed  CAS  Google Scholar 

  118. Stamatovic SM, Keep RF, Mostarica-Stojkovic M, Andjelkovic AV (2006) CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol 177:2651–2661

    PubMed  CAS  Google Scholar 

  119. Cordenonsi M, Mazzon E, De Rigo L, Baraldo S, Meggio F, Citi S (1997) Occludin dephosphorylation in early development of Xenopus laevis. J Cell Sci 110:3131–3139

    PubMed  CAS  Google Scholar 

  120. Nunbhakdi-Craig V, Machleidt T, Ogris E, Bellotto D, White CL III, Sontag E (2002) Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex. J Cell Biol 158:967–978

    Article  PubMed  CAS  Google Scholar 

  121. Sakakibara A, Furuse M, Saitou M, Ando-Akatsuka Y, Tsukita S (1997) Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 137:1393–1401

    Article  PubMed  CAS  Google Scholar 

  122. Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the [beta]-arrestin-dependent endocytosis of VE-cadherin. 8:1223–1234

  123. Xia P, Aiello LP, Ishii H, Jiang ZY, Park DJ, Robinson GS, Takagi H, Newsome WP, Jirousek MR, King GL et al (1996) Characterization of vascular endothelial growth factor’s effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. The J Clinic Inves 98:2018–2026

    Article  CAS  Google Scholar 

  124. Aijaz S, D’Atri F, Citi S, Balda MS, Matter K (2005) Binding of GEF-H1 to the Tight junction-associated adaptor cingulin results in inhibition of Rho signaling and G1/S phase transition. Developmental Cell 8:777–786

    Article  PubMed  CAS  Google Scholar 

  125. Benais-Pont G, Punn A, Flores-Maldonado C, Eckert J, Raposo G, Fleming TP, Cereijido M, Balda MS, Matter K (2003) Identification of a tight junction-associated guanine nucleotide exchange factor that activates Rho and regulates paracellular permeability. J Cell Biol 160:729–740

    Article  PubMed  CAS  Google Scholar 

  126. Balda MS, Garrett MD, Matter K (2003) The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol 160:423–432

    Article  PubMed  CAS  Google Scholar 

  127. Sourisseau T, Georgiadis A, Tsapara A, Ali RR, Pestell R, Matter K, Balda MS (2006) Regulation of PCNA and cyclin D1 expression and epithelial morphogenesis by the ZO-1-regulated transcription factor ZONAB/DbpA. Mol Cell Biol 26:2387–2398

    Article  PubMed  CAS  Google Scholar 

  128. Dasgupta P, Sun J, Wang S, Fusaro G, Betts V, Padmanabhan J, Sebti SM, Chellappan SP (2004) Disruption of the Rb-Raf-1 interaction inhibits tumor growth and angiogenesis. Mol Cell Biol 24:9527–9541

    Article  PubMed  CAS  Google Scholar 

  129. Wang Z, Wade P, Mandell KJ, Akyildiz A, Parkos CA, Mrsny RJ, Nusrat A (2006) Raf 1 represses expression of the tight junction protein occludin via activation of the zinc-finger transcription factor slug. Oncogene (in press)

  130. Wang Z, Mandell KJ, Parkos CA, Mrsny RJ, Nusrat A (2005) The second loop of occludin is required for suppression of Raf1-induced tumor growth. Oncogene 24:4412–4420

    Google Scholar 

  131. Johnstone RW, Gerber M, Landewe T, Tollefson A, Wold WS, Shilatifard A (2001) Functional analysis of the leukemia protein ELL: evidence for a role in the regulation of cell growth and survival. Mol Cell Biol 21:1672–1681

    Article  PubMed  CAS  Google Scholar 

  132. Osanai M, Murata M, Nishikiori N, Chiba H, Kojima T, Sawada N (2006) Epigenetic silencing of occludin promotes tumorigenic and metastatic properties of cancer cells via modulations of unique sets of apoptosis-associated genes. Cancer Res 66:9125–9133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr Alistair Barber, Dr Thomas Gardner and Dr Tomoaki Murakami for their kind help in preparing this review and Jeannie Kazy Erickson for her artistic rendering. Work on this review was supported by an unrestricted educational grant from Allergan, as well as NIH grant EY012021 and EY016413 (DAA), and the Juvenile Diabetes Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Antonetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erickson, K.K., Sundstrom, J.M. & Antonetti, D.A. Vascular permeability in ocular disease and the role of tight junctions. Angiogenesis 10, 103–117 (2007). https://doi.org/10.1007/s10456-007-9067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-007-9067-z

Keywords

Navigation