Skip to main content
Log in

Chemopreventive agent-induced modulation of death receptors

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The goals of chemoprevention of cancer are to inhibit the initiation or suppress the promotion and progression of preneoplastic lesions to invasive cancer through the use specific natural or synthetic agents. Therefore, a more desirable and aggressive approach is to eliminate aberrant clones by inducing apoptosis rather than merely slowing down their proliferation. The increased understanding of apoptosis pathways has directed attention to components of these pathways as potential targets not only for chemotherapeutic but also for chemopreventive agents. Activation of death receptors triggers an extrinsic apoptotic pathway, which plays a critical role in tumor immunosurveillance. An increasing number of previously identified chemopreventive agents were found to induce apoptosis in a variety of premalignant and malignant cell types in vitro and in a few animal models in vivo. Some chemopreventive agents such as non-steroidal anti-inflammatory drugs, tritepenoids, and retinoids increase the expression of death receptors. Thus, understanding the modulation of death receptors by chemopreventive agents and their implications in chemoprevention may provide a rational approach for using such agents alone or in combination with other agents to enhance death receptor-mediated apoptosis as a strategy for effective chemoprevention of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kelloff GJ, Sigman CC, Greenwald P. Cancer chemoprevention: Progress and promise. Eur J Cancer 1999; 35: 1755–1762.

    CAS  PubMed  Google Scholar 

  2. Hong WK, Sporn MB. Recent advances in chemoprevention of cancer. Science 1997; 278: 1073–1077.

    Article  CAS  PubMed  Google Scholar 

  3. Sporn MB, Suh N. Chemoprevention: An essential approach to controlling cancer. Nat Rev Cancer 2002; 2: 537–543.

    Article  CAS  PubMed  Google Scholar 

  4. Kelloff GJ, Crowell JA, Steele VE, et al. Progress in cancer chemoprevention. Ann N Y Acad Sci 1999; 889: 1–13.

    CAS  PubMed  Google Scholar 

  5. Tsao AS, Kim ES, Hong WK. Chemoprevention of cancer. CA Cancer J Clin 2004; 54: 150–180.

    PubMed  Google Scholar 

  6. Steller H. Mechanisms and genes of cellular suicide. Science 1995; 267: 1445–1449.

    CAS  PubMed  Google Scholar 

  7. Metcalfe A, Streuli C. Epithelial apoptosis. BioEssays 1997; 19: 711–720.

    Article  CAS  PubMed  Google Scholar 

  8. Green DR, Evan GI. A matter of life and death. Cancer Cell 2002; 1: 19–30.

    Article  CAS  PubMed  Google Scholar 

  9. Sun SY, Hail N Jr, Lotan R. Apoptosis as a novel target for cancer chemoprevention. J Natl Cancer Inst 2004; 96: 662–672.

    CAS  PubMed  Google Scholar 

  10. Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation. Science 1998; 281: 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  11. Hengartner MO. The Biochemistry of apoptosis. Nature 2000; 407: 770–776.

    Article  CAS  PubMed  Google Scholar 

  12. Green DR. Apoptotic pathways: Paper wraps stone blunts scissors. Cell 2000; 102: 1–4.

    Article  CAS  PubMed  Google Scholar 

  13. Kelley SK, Ashkenazi A. Targeting death receptors in cancer with Apo2L/TRAIL. Curr Opin Pharmacol 2004; 4: 333–339.

    CAS  PubMed  Google Scholar 

  14. Bouralexis S, Findlay DM, Evdokiou A. Death to the bad guys: Targeting cancer via Apo2L/TRAIL. Apoptosis 2005; 10: 35–51.

    Article  CAS  PubMed  Google Scholar 

  15. Yagita H, Takeda K, Hayakawa Y, Smyth MJ, Okumura K. TRAIL and its receptors as targets for cancer therapy. Cancer Sci 2004; 95: 777–783.

    Article  CAS  PubMed  Google Scholar 

  16. Debatin KM, Krammer PH. Death receptors in chemotherapy and cancer. Oncogene 2004; 23: 2950–2966.

    Article  CAS  PubMed  Google Scholar 

  17. Wajant H, Gerspach J, Pfizenmaier K. Tumor therapeutics by design: Targeting and activation of death receptors. Cytokine Growth Factor Rev 2005; 16: 55–76.

    Article  CAS  PubMed  Google Scholar 

  18. Reed JC. Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol 1999; 11: 68–75.

    Article  CAS  PubMed  Google Scholar 

  19. Smyth MJ, Hayakawa Y, Takeda K, Yagita H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2002; 2: 850–861.

    Article  CAS  PubMed  Google Scholar 

  20. Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, van den Brink MR, Yagita H. Nature's TRAIL—on a path to cancer immunotherapy. Immunity 2003; 18: 1–6.

    Article  CAS  PubMed  Google Scholar 

  21. Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y. Cytokines in cancer immunity and immunotherapy. Immunol Rev 2004; 202: 275–293.

    Article  CAS  PubMed  Google Scholar 

  22. Lee SH, Yoo NJ, Lee JY. Death receptor mutations. In: El-Deiry WS, ed. Cancer drug discovery and development: Death receptors in cancer biology. New Jersey: Humana Press Inc. 2005: 149–162.

    Google Scholar 

  23. Strand S, Hofmann WJ, Hug H, et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells—A mechanism of immune evasion? Nat Med 1996; 2: 1361–1366.

    Article  CAS  PubMed  Google Scholar 

  24. Reesink-Peters N, Hougardy BM, van den Heuvel FA, et al. Death receptors and ligands in cervical carcinogenesis: An immunohistochemical study. Gynecol Oncol 2005; 96: 705–713.

    CAS  PubMed  Google Scholar 

  25. Hopkins-Donaldson S, Ziegler A, Kurtz S, et al. Silencing of death receptor and caspase-8 expression in small cell lung carcinoma cell lines and tumors by DNA methylation. Cell Death Differ 2003; 10: 356–364.

    Article  CAS  PubMed  Google Scholar 

  26. Shivapurkar N, Reddy J, Matta H, et al. Loss of expression of death-inducing signaling complex (DISC) components in lung cancer cell lines and the influence of MYC amplification. Oncogene 2002; 21: 8510–8514.

    Article  CAS  PubMed  Google Scholar 

  27. Shivapurkar N, Toyooka S, Toyooka KO, et al. Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types. Int J Cancer 2004; 109: 786–792.

    Article  CAS  PubMed  Google Scholar 

  28. Margetts CD, Astuti D, Gentle DC, et al. Epigenetic analysis of HIC1, CASP8, FLIP, TSP1, DCR1, DCR2, DR4, DR5, KvDMR1, H19 and preferential 11p15.5 maternal-allele loss in von Hippel-Lindau and sporadic phaeochromocytomas. Endocr Relat Cancer 2005; 12: 161–172.

    Article  CAS  PubMed  Google Scholar 

  29. Pitti RM, Marsters SA, Lawrence DA, et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 1998; 396: 699–703.

    CAS  PubMed  Google Scholar 

  30. Bai C, Connolly B, Metzker ML, et al. Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four-gene cluster. Proc Natl Acad Sci USA 2000; 97: 1230–1235.

    Article  CAS  PubMed  Google Scholar 

  31. Sheikh MS, Huang Y, Fernandez-Salas EA, et al. The antiapoptotic decoy receptor TRID/TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene 1999; 18: 4153–4159.

    CAS  PubMed  Google Scholar 

  32. Wajant H. Targeting the FLICE Inhibitory Protein (FLIP) in cancer therapy. Mol Interv 2003; 3: 124–127.

    Article  CAS  PubMed  Google Scholar 

  33. Roth W, Reed JC. FLIP protein and TRAIL-induced apoptosis. Vitam Horm 2004; 67: 189–206.

    CAS  PubMed  Google Scholar 

  34. French LE, Tschopp J. Defective death receptor signaling as a cause of tumor immune escape. Semin Cancer Biol 2002; 12: 51–55.

    Article  CAS  PubMed  Google Scholar 

  35. Huang Y, He Q, Hillman MJ, Rong R, Sheikh MS. Sulindac sulfide-induced apoptosis involves death receptor 5 and the caspase 8-dependent pathway in human colon and prostate cancer cells. Cancer Res 2001; 61: 6918–6924.

    CAS  PubMed  Google Scholar 

  36. Jang TJ, Kang HJ, Kim JR, Yang CH. Non-steroidal anti-inflammatory drug activated gene (NAG-1) expression is closely related to death receptor-4 and -5 induction, which may explain sulindac sulfide induced gastric cancer cell apoptosis. Carcinogenesis 2004; 25: 1853–1858.

    Article  CAS  PubMed  Google Scholar 

  37. Han Z, Pantazis P, Wyche JH, Kouttab N, Kidd VJ, Hendrickson EA. A Fas-associated death domain protein-dependent mechanism mediates the apoptotic action of non-steroidal anti-inflammatory drugs in the human leukemic Jurkat cell line. J Biol Chem 2001; 276: 38748–38754.

    CAS  PubMed  Google Scholar 

  38. Liu X, Yue P, Zhou Z, Khuri FR, Sun SY. Death receptor regulation and celecoxib-induced apoptosis in human lung cancer cells. J Natl Cancer Inst 2004; 96: 1769–1780.

    CAS  PubMed  Google Scholar 

  39. Sun SY, Lotan R. Retinoids and their receptors in cancer development and chemoprevention. Crit Rev Oncol Hematol 2002; 41: 41–55.

    PubMed  Google Scholar 

  40. Sun SY, Yue P, Wu GS, et al. Mechanisms of apoptosis induced by the synthetic retinoid CD437 in human non-small cell lung carcinoma cells. Oncogene 1999; 18: 2357–2365.

    CAS  PubMed  Google Scholar 

  41. Sun SY, Yue P, Wu GS, et al. Implication of p53 in growth arrest and apoptosis induced by the synthetic retinoid CD437 in human lung cancer cells. Cancer Res 1999; 59: 2829–2833.

    CAS  PubMed  Google Scholar 

  42. Sun SY, Yue P, Hong WK, Lotan R. Induction of Fas expression and eugmentation of Fas/FasL-mediated apoptosis by the synthetic retinoid CD437 in human lung cancer cells. Cancer Res 2000; 60: 6537–6543.

    CAS  PubMed  Google Scholar 

  43. Sun SY. Regulation of death receptors by synthetic retinoids. In: El-Deiry WS, ed. Cancer drug discovery and development: Death receptors in cancer biology. New Jersey: Humana Press Inc. 2005: 189–200.

    Google Scholar 

  44. Muller M, Wilder S, Bannasch D, et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 1998; 188: 2033–4205.

    Article  CAS  PubMed  Google Scholar 

  45. Takimoto R, El-Deiry WS. Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 2000; 19: 1735–1743.

    Article  CAS  PubMed  Google Scholar 

  46. Liu X, Yue P, Khuri FR, Sun SY. p53 upregulates death receptor 4 expression through an intronic p53 binding site. Cancer Res 2004; 64: 5078–5083.

    CAS  PubMed  Google Scholar 

  47. Sun SY, Yue P, Chen X, Hong WK, Lotan R. The synthetic retinoid CD437 selectively induces apoptosis in human lung cancer cells while sparing normal human lung epithelial cells. Cancer Res 2002; 62: 2430–2436.

    CAS  PubMed  Google Scholar 

  48. Sun SY, Yue P, Mao L, et al. Identification of receptor-selective retinoids that are potent inhibitors of the growth of human head and neck squamous cell carcinoma cells. Clin Cancer Res 2000; 6: 1563–1573.

    CAS  PubMed  Google Scholar 

  49. Sun SY, Yue P, Lotan R. Implication of multiple mechanisms in apoptosis induced by the synthetic retinoid CD437 in human prostate carcinoma cells. Oncogene 2000; 19: 4513–4522.

    Article  CAS  PubMed  Google Scholar 

  50. Puduvalli VK, Li JT, Chen L, McCutcheon IE. Induction of apoptosis in primary meningioma cultures by fenretinide. Cancer Res 2005; 5: 1547–1553.

    Google Scholar 

  51. Cuello M, Coats AO, Darko I, et al. N-(4-hydroxyphenyl) retinamide (4HPR) enhances TRAIL-mediated apoptosis through enhancement of a mitochondrial-dependent amplification loop in ovarian cancer cell lines. Cell Death Differ 2004; 1: 527–551.

    Google Scholar 

  52. Sporn MB, Suh N. Chemoprevention of cancer. Carcinogenesis 2000; 1: 525–550.

    Google Scholar 

  53. Meng RD, El-Deiry WS. p53-independent upregulation of KILLER/DR5 TRAIL receptor expression by glucocorticoids and interferon-gamma. Exp Cell Res 2001; 262: 154–169.

    Article  CAS  PubMed  Google Scholar 

  54. Xia L, Chen D, Han R, Fang Q, Waxman S, Jing Y. Boswellic acid acetate induces apoptosis through caspase-mediated pathways in myeloid leukemia cells. Mol Cancer Ther 2005; 4: 381–388.

    CAS  PubMed  Google Scholar 

  55. Zou W, Liu X, Yue P, et al. c-Jun NH2-terminal kinase-mediated up-regulation of death receptor 5 contributes to induction of apoptosis by the novel synthetic triterpenoid methyl-2-cyano-3,12-dioxooleana-1, 9-dien-28-oate in human lung cancer cells. Cancer Res 2004; 64: 7570–7578.

    CAS  PubMed  Google Scholar 

  56. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res 2004; 24: 2783–2840.

    CAS  PubMed  Google Scholar 

  57. Delmas D, Rebe C, Lacour S, et al. Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J Biol Chem 2003; 278: 41482–41490.

    CAS  PubMed  Google Scholar 

  58. Delmas D, Rebe C, Micheau O, et al. Redistribution of CD95, DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells. Oncogene 2004; 23: 8979–8986.

    Article  CAS  PubMed  Google Scholar 

  59. Kuo PL, Lin CC. Green tea constituent (−)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. J Biomed Sci 2003; 10: 219–227.

    CAS  PubMed  Google Scholar 

  60. Hayakawa S, Saeki K, Sazuka M, et al. Apoptosis induction by epigallocatechin gallate involves its binding to Fas. Biochem Biophys Res Commun 2001; 285: 1102–1106.

    Article  CAS  PubMed  Google Scholar 

  61. Turley JM, Fu T, Ruscetti FW, Mikovits JA, Bertolette DC 3rd, Birchenall-Roberts MC. Vitamin E succinate induces Fas-mediated apoptosis in estrogen receptor-negative human breast cancer cells. Cancer Res 1997; 57: 881–890.

    CAS  PubMed  Google Scholar 

  62. Yu W, Israel K, Liao QY, Aldaz CM, Sanders BG, Kline K. Vitamin E succinate (VES) induces Fas sensitivity in human breast cancer cells: Role for Mr 43,000 Fas in VES-triggered apoptosis. Cancer Res 1999; 59: 953–961.

    CAS  PubMed  Google Scholar 

  63. Israel K, Yu W, Sanders BG, Kline K. Vitamin E succinate induces apoptosis in human prostate cancer cells: Role for Fas in vitamin E succinate-triggered apoptosis. Nutr Cancer 2000; 36: 90–100.

    CAS  PubMed  Google Scholar 

  64. Tomasetti M, Rippo MR, Alleva R, et al. Alpha-tocopheryl succinate and TRAIL selectively synergise in induction of apoptosis in human malignant mesothelioma cells. Br J Cancer 2004; 90: 1644–1653.

    Article  CAS  PubMed  Google Scholar 

  65. He Q, Rashid A, Rong R, Hillman MJ, Huang Y, Sheikh MS. Death receptor 5 regulation during selenium-mediated apoptosis in human prostate cancer cells. Cancer Biol Ther 2002; 1: 287–290.

    CAS  PubMed  Google Scholar 

  66. Fujita K, Matsuda E, Sekine K, Iigo M, Tsuda H. Lactoferrin enhances Fas expression and apoptosis in the colon mucosa of azoxymethane-treated rats. Carcinogenesis 2004; 25: 1961–1966.

    Article  CAS  PubMed  Google Scholar 

  67. Bush JA, Cheung KJ Jr, Li G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res 2001; 271: 305–314.

    Article  CAS  PubMed  Google Scholar 

  68. Deeb D, Jiang H, Gao X, et al. Curcumin sensitizes prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-kappaB through suppression of IkappaBalpha phosphorylation. Mol Cancer Ther 2004; 3: 803–812.

    CAS  PubMed  Google Scholar 

  69. Shigeno M, Nakao K, Ichikawa T, et al. Interferon-alpha sensitizes human hepatoma cells to TRAIL-induced apoptosis through DR5 upregulation and NF-kappa B inactivation. Oncogene 2003; 22: 1653–1662.

    Article  CAS  PubMed  Google Scholar 

  70. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med 2001; 7: 680–686.

    Article  CAS  PubMed  Google Scholar 

  71. Clarke N, Jimenez-Lara AM, Voltz E, Gronemeyer H. Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL. EMBO J 2004; 23: 3051–3060.

    Article  CAS  PubMed  Google Scholar 

  72. Wang Q, Ji Y, Wang X, Evers BM. Isolation and molecular characterization of the 5′-upstream region of the human TRAIL gene. Biochem Biophys Res Commun 2000; 276: 466–471.

    CAS  PubMed  Google Scholar 

  73. Wang Q, Wang X, Hernandez A, Hellmich MR, Gatalica Z, Evers BM. Regulation of TRAIL expression by the phosphatidylinositol 3-kinase/Akt/GSK-3 pathway in human colon cancer cells. J Biol Chem 2002; 277: 36602–36610.

    CAS  PubMed  Google Scholar 

  74. Klaunig JE, Xu Y, Isenberg JS, et al. The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect 1998; 106: 289–295.

    CAS  PubMed  Google Scholar 

  75. Vallyathan V, Shi X, Castranova V. Reactive oxygen species: Their relation to pneumoconiosis and carcinogenesis. Environ Health Perspect 1998; 106: 1151–1155.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-Y. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, SY. Chemopreventive agent-induced modulation of death receptors. Apoptosis 10, 1203–1210 (2005). https://doi.org/10.1007/s10495-005-2274-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-2274-4

Keywords

Navigation