Skip to main content

Advertisement

Log in

Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Macroautophagy (autophagy), a process for lysosomal degradation of organelles and long-lived proteins, has been linked to various pathologies including cancer and to the cellular response to anticancer therapies. In the human estrogen receptor positive MCF7 breast adenocarcinoma cell line, treatment with the endocrine therapeutic tamoxifen was shown previously to induce cell cycle arrest, cell death, and autophagy. To investigate specifically the role of autophagy in tamoxifen treated breast cancer cell lines, we used a siRNA approach, targeting three different autophagy genes, Atg5, Beclin-1, and Atg7. We found that knockdown of autophagy, in combination with tamoxifen in MCF7 cells, results in decreased cell viability concomitant with increased mitochondrial-mediated apoptosis. The combination of autophagy knockdown and tamoxifen treatment similarly resulted in reduced cell viability in the breast cancer cell lines, estrogen receptor positive T-47D and tamoxifen-resistant MCF7-HER2. Together, these results indicate that autophagy has a primary pro-survival role following tamoxifen treatment, and suggest that autophagy knockdown may be useful in a combination therapy setting to sensitize breast cancer cells, including tamoxifen-resistant breast cancer cells, to tamoxifen therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Atg:

Autophagy-related

BECN1:

Beclin-1

ER:

Estrogen receptor

ER+:

Estrogen receptor positive

GFP:

Green fluorescent protein

HCS:

High content screening

LTGY:

Lysotracker green

HER-2:

Human epidermal growth factor receptor-2

MAP1LC3B or LC3:

Microtubule-associated protein 1 light chain 3 beta

MDC:

Monodansylcadaverine

MMP:

Mitochondrial membrane potential

PR:

Progesterone receptor

RNAi:

RNA interference

SERM:

Selective estrogen receptor modulator

SiRNA:

Small interfering RNA

TAM:

Tamoxifen

TMZ:

Temozolomide

3-MA:

3-Methyladenine

References

  1. WHO. Cited; Available from http://www.who.int/en/

  2. Jordan VC (2003) Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov 2:205–213

    Article  PubMed  CAS  Google Scholar 

  3. American Cancer Society. Cited; Available from http://www.cancer.org/docroot/home/index.asp

  4. Smith CL, Nawaz Z, O’Malley BW (1997) Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 11:657–666

    Article  PubMed  CAS  Google Scholar 

  5. Caldon CE, Daly RJ, Sutherland RL, Musgrove EA (2006) Cell cycle control in breast cancer cells. J Cell Biochem 97:261–274

    Article  PubMed  CAS  Google Scholar 

  6. Mandlekar S, Kong ANT (2001) Mechanisms of tamoxifen-induced apoptosis. Apoptosis 6:469–477

    Article  PubMed  CAS  Google Scholar 

  7. Ring A, Dowsett M (2004) Mechanisms of tamoxifen resistance. Endocr Relat Cancer 11:643–658

    Article  PubMed  CAS  Google Scholar 

  8. Knuefermann C, Lu Y, Liu B, Jin W, Liang K, Wu L, Schmidt M, Mills GB, Mendelsohn J, Fan Z (2003) HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 22:3205–3212

    Article  PubMed  CAS  Google Scholar 

  9. Liang K, Lu Y, Jin W, Ang KK, Milas L, Fan Z (2003) Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther 2:1113–1120

    PubMed  CAS  Google Scholar 

  10. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R (2004) Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96:926–935

    PubMed  CAS  Google Scholar 

  11. Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M, Walker R, Hermann RS (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17:1595–1607

    Article  PubMed  CAS  Google Scholar 

  12. Bilir A, Altinoz MA, Erkan M, Ozmen V, Aydiner A (2001) Autophagy and nuclear changes in FM3A breast tumor cells after epirubicin, medroxyprogesterone and tamoxifen treatment in vitro. Pathobiology 69:120–126

    Article  PubMed  CAS  Google Scholar 

  13. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    Article  PubMed  CAS  Google Scholar 

  14. Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    Article  PubMed  CAS  Google Scholar 

  15. Harding TM, Morano KA, Scott SV, Klionsky DJ (1995) Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131:591–602

    Article  PubMed  CAS  Google Scholar 

  16. Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  PubMed  CAS  Google Scholar 

  17. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol, 6:505–510

    Article  PubMed  CAS  Google Scholar 

  18. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    Article  PubMed  CAS  Google Scholar 

  19. Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248

    Article  PubMed  CAS  Google Scholar 

  20. Hait WN, Jin S, Yang JM (2006) A matter of life or death (or both): understanding autophagy in cancer. Clin Cancer Res 12:1961–1965

    Article  PubMed  CAS  Google Scholar 

  21. Williams A, Jahreiss L, Sarkar S, Saiki S, Menzies FM, Ravikumar B, Rubinsztein DC (2006) Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr Top Dev Biol 76:89–101

    Article  PubMed  CAS  Google Scholar 

  22. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, Pierron G, Codogno P (2006) NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281:30373–30382

    Article  PubMed  CAS  Google Scholar 

  23. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13:619–624

    Article  PubMed  CAS  Google Scholar 

  24. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502

    Article  PubMed  CAS  Google Scholar 

  25. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228

    Article  PubMed  CAS  Google Scholar 

  26. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734

    Article  PubMed  CAS  Google Scholar 

  27. Kondo Y, Kondo S (2006) Autophagy and cancer therapy. Autophagy 2:85–90

    PubMed  Google Scholar 

  28. Bauvy C, Gane P, Arico S, Codogno P, Ogier-Denis E (2001) Autophagy delays sulindac sulfide-induced apoptosis in the human. Exp Cell Res 268:139–149

    Article  PubMed  CAS  Google Scholar 

  29. Kanzawa T, Zhang L, Xiao L, Germano IM, Kondo Y, Kondo S (2005) Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 24:980–991

    Article  PubMed  CAS  Google Scholar 

  30. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J (2001) A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61:439–444

    PubMed  CAS  Google Scholar 

  31. Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y (2005) Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 26:1401–1410

    PubMed  CAS  Google Scholar 

  32. Klionsky DJ, Cuervo AM, Seglen PO (2007) Methods for monitoring autophagy from yeast to human. Autophagy 3:181–206

    PubMed  CAS  Google Scholar 

  33. Abedin MJ, Wang D, McDonnell MA, Lehmann U, Kelekar A (2007) Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 14:500–510

    Article  PubMed  CAS  Google Scholar 

  34. Katayama M, Kawaguchi T, Berger MS, Pieper RO (2006) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14:548–558

    Article  PubMed  CAS  Google Scholar 

  35. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117:326–336

    Article  PubMed  CAS  Google Scholar 

  36. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  Google Scholar 

  37. Niemann A, Takatsuki A, Elsasser HP (2000) The lysosomotropic agent monodansylcadaverine also acts as a solvent polarity probe. J Histochem Cytochem 48:251–258

    PubMed  CAS  Google Scholar 

  38. Niemann A, Baltes J, Elsasser HP (2001) Fluorescence properties and staining behavior of monodansylpentane, a structural homologue of the lysosomotropic agent monodansylcadaverine. J Histochem Cytochem 49:177–185

    PubMed  CAS  Google Scholar 

  39. Munafo DB, Colombo MI (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114:3619–3629

    PubMed  CAS  Google Scholar 

  40. Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36:2491–2502

    Article  PubMed  CAS  Google Scholar 

  41. Luo S, Rubinsztein DC (2007) Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ 14:1247–1250

    Article  PubMed  CAS  Google Scholar 

  42. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132

    Article  PubMed  CAS  Google Scholar 

  43. Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419

    Article  PubMed  CAS  Google Scholar 

  44. Melino G, Knight RA, Nicotera P (2005) How many ways to die? How many different models of cell death? Cell Death Differ 12(Suppl 2):1457–1462

    Article  PubMed  CAS  Google Scholar 

  45. Bachmann-Moisson N, Barberi-Heyob M, Merlin JL, Ledrich ML, Batt AM, Guillemin F (1996) [Cytotoxicity of tamoxifen and its principal metabolites in human breast cancer cell lines]. Bull Cancer 83:808–815

    PubMed  CAS  Google Scholar 

  46. Jiang X, Roth L, Lai C, Li X (2006) Profiling activities of transcription factors in breast cancer cell lines. Assay Drug Dev Technol 4:293–305

    Article  PubMed  CAS  Google Scholar 

  47. Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, Shepard HM, Osborne CK (1992) Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 24:85–95

    Article  PubMed  CAS  Google Scholar 

  48. Hoyer-Hansen M, Bastholm L, Mathiasen IS, Elling F, Jaattela M (2005) Vitamin D analog EB1089 triggers dramatic lysosomal changes and beclin 1-mediated autophagic cell death. Cell Death Differ 12(10):1297–1309

    Article  PubMed  CAS  Google Scholar 

  49. Bao Q, Shi Y (2007) Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ 14:56–65

    Article  PubMed  CAS  Google Scholar 

  50. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040

    Article  PubMed  CAS  Google Scholar 

  51. Gonzalez-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Souquere S, Eskelinen EL, Pierron G, Saftig P, Kroemer G (2005) The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 118:3091–3102

    Article  PubMed  CAS  Google Scholar 

  52. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    Article  PubMed  CAS  Google Scholar 

  53. Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360

    Article  PubMed  CAS  Google Scholar 

  54. Arpino G, Weiss H, Lee AV, Schiff R, De Placido S, Osborne CK, Elledge RM (2005) Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J Natl Cancer Inst 97:1254–1261

    Article  PubMed  CAS  Google Scholar 

  55. Borg A, Baldetorp B, Ferno M, Killander D, Olsson H, Ryden S, Sigurdsson H (1994) ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett 81:137–144

    Article  PubMed  CAS  Google Scholar 

  56. Argiris A, Wang CX, Whalen SG, DiGiovanna MP (2004) Synergistic interactions between tamoxifen and trastuzumab (herceptin). Clin Cancer Res 10:1409–1420

    Article  PubMed  CAS  Google Scholar 

  57. Guarneri V, Conte PF (2004) The curability of breast cancer and the treatment of advanced disease. Eur J Nucl Med Mol Imaging 31(Suppl 1):S149–S161

    Article  PubMed  Google Scholar 

  58. Johnston SR (2005) Combinations of endocrine and biological agents: present status of therapeutic and presurgical investigations. Clin Cancer Res 11:889s–899s

    PubMed  CAS  Google Scholar 

  59. Menard S, Casalini P, Campiglio M, Pupa SM, Tagliabue E (2004) Role of HER2/neu in tumor progression and therapy. Cell Mol Life Sci 61:2965–2978

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Yoshimori for the GFP-LC3 plasmid, M. Roberge, I. Nabi, A. Balgi and P. Lajoie for the stably transfected MCF7-GFP-LC3 cell line, J. Halaschek-Wiener and M. Marra for helpful comments on the manuscript, Steven Poon for valuable suggestions in designing the segmentation protocols for high content screening, S. Oomah for assistance with primer design, and the British Columbia Cancer Foundation for support. SMG also thanks S. O’Reilly for assistance through an Abbott Research Grant. This work was supported by USAMRMC Breast Cancer Research Program Concept Award Number W81XWH-05-1-04 and Canadian Breast Cancer Foundation BC/Yukon Chapter grant to SMG. The Canadian Breast Cancer Research Alliance and Canadian Institutes of Health Research also supported aspects of these studies (MBB and WHD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon M. Gorski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qadir, M.A., Kwok, B., Dragowska, W.H. et al. Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Treat 112, 389–403 (2008). https://doi.org/10.1007/s10549-007-9873-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9873-4

Keywords

Navigation