Skip to main content

Advertisement

Log in

The molecular identity and characterization of a Proton-Coupled Folate Transporter—PCFT; biological ramifications and impact on the activity of pemetrexed—12 06 06

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Membrane transport of folates is essential for the survival of all mammalian cells and transport of antifolates is an important determinant of antifolate activity. While a major focus of attention has been on transport mediated by the reduced folate carrier and folate receptors, a very prominent carrier-mediated folate transport activity has been recognized for decades with a low-pH optimum and substrate specificity distinct from that of the reduced folate carrier which operates most efficiently at neutral pH. This low-pH transporter represents the mechanism by which folates are absorbed in the small intestine and it is also widely expressed in other human tissues and solid tumors. Recently, this laboratory discovered the molecular identity of this transporter which is genetically unrelated to the reduced folate carrier. This transporter is proton-coupled, electrogenic, and manifests a substrate specificity that is similar to that of the low-pH transport activity previously described in mammalian cells. The key role this transporter plays in intestinal folate absorption has been confirmed by the demonstration of a mutation in this gene in the rare autosomal recessive disorder, hereditary folate malabsorption. This article reviews (1) the characteristics and prevalence of the low-pH folate transport activity, (2) its relationship to, and properties of, the recently identified Proton-Coupled Folate Transporter (PCFT), (3) the physiological and pharmacological roles of this transporter, particularly with respect to pemetrexed, and (4) the historical controversy, now resolved, on the mechanism of intestinal folate absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MTX:

methotrexate

5-methylTHF:

5-methyltetrahydrofolate

5-formylTHF:

5-formyltetrahydrofolate

RFC:

reduced folate carrier

FR:

folate receptor

PCFT:

Proton-Coupled Folate Transporter

HFM:

hereditary folate malabsorption

CSF:

cerebrospinal fluid

CNS:

central nervous system

References

  1. Zhao, R., & Goldman, I. D. (2003). Resistance to antifolates. Oncogene, 22, 7431–7457.

    Article  PubMed  CAS  Google Scholar 

  2. Matherly, L. H., & Goldman, D. I. (2003). Membrane transport of folates. Vitamins and Hormones, 66, 403–456.

    PubMed  CAS  Google Scholar 

  3. Zhao, R., Gao, F., Hanscom, M., & Goldman, I. D. (2004). A prominent low-pH methotrexate transport activity in human solid tumor cells: Contribution to the preservation of methotrexate pharmacological activity in HeLa cells lacking the reduced folate carrier. Clinical Cancer Research, 10, 718–727.

    Article  PubMed  CAS  Google Scholar 

  4. Zhao, R., Hanscom, M., & Goldman, I. D. (2005). The relationship between folate transport activity at low pH and reduced folate carrier function in human Huh7 hepatoma cells. Biochimica et Biophysica Acta, 1715, 57–64.

    PubMed  CAS  Google Scholar 

  5. Qiu, A., Jansen, M., Sakaris, A., Min, S. H., Chattopadhyay, S., Tsai, E., et al. (2006). Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell, 127, 917–928.

    Article  PubMed  CAS  Google Scholar 

  6. Vogelzang, N. J., Rusthoven, J. J., Symanowski, J., Denham, C., Kaukel, E., Ruffie, P., et al. (2003). Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. Journal of Clinical Oncology, 21, 2636–2644.

    Article  PubMed  CAS  Google Scholar 

  7. Hanna, N., Shepherd, F. A., Fossella, F. V., Pereira, J. R., De Marinis, F., Von Pawel, J., et al. (2004). Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. Journal of Clinical Oncology, 22, 1589–1597.

    Article  PubMed  CAS  Google Scholar 

  8. Halsted, C. H. (1979). The intestinal absorption of folates. American Journal of Clinical Nutrition, 32, 846–855.

    PubMed  CAS  Google Scholar 

  9. Mason, J. B., & Rosenberg, I. H. (1994). Intestinal absorption of folate. In L. R. Johnson (Ed.), Physiology of the gastrointestinal tract (pp. 1979–1995). New York: Raven.

    Google Scholar 

  10. Said, H. M. (2004). Recent advances in carrier-mediated intestinal absorption of water-soluble vitamins. Annual Review of Physiology, 66, 419–446.

    Article  PubMed  CAS  Google Scholar 

  11. Schron C. M., Washington, C., Jr., & Blitzer, B. L. (1985). The transmembrane pH gradient drives uphill folate transport in rabbit jejunum. Direct evidence for folate/hydroxyl exchange in brush border membrane vesicles. Journal of Clinical Investigation, 76, 2030–2033.

    Article  PubMed  CAS  Google Scholar 

  12. McEwan, G. T., Lucas, M. L., Denvir, M., Raj, M., McColl, K. E., Russell, R. I., et al. (1990). A combined TDDA–PVC pH and reference electrode for use in the upper small intestine. Journal of Medical Engineering & Technology, 14, 16–20.

    CAS  Google Scholar 

  13. Ikuma, M., Hanai, H., Kaneko, E., Hayashi, H., & Hoshi, T. (1996). Effects of aging on the microclimate pH of the rat jejunum. Biochimica et Biophysica Acta, 1280, 19–26.

    PubMed  Google Scholar 

  14. Said, H. M., Smith, R., & Redha, R. (1987). Studies on the intestinal surface acid microclimate: Developmental aspects. Pediatric Research, 22, 497–499.

    PubMed  CAS  Google Scholar 

  15. Horne, D. W. (1990). Na+ and pH dependence of 5-methyltetrahydrofolic acid and methotrexate transport in freshly isolated hepatocytes. Biochimica et Biophysica Acta. Biomembranes, 1023, 47–55.

    Article  CAS  Google Scholar 

  16. Han, Y. H., Kato, Y., Watanabe, Y., Terao, K., Asoh, Y., & Sugiyama, Y. (2001). Carrier-mediated hepatobiliary transport of a novel antifolate, N-[4-[(2,4-dianninopteridine-6-yl)methyl]-3,4-dihydro-2H-1,4-benzothiazin-7-yl]carbonyl-L-homoglutamic acid, in rats. Drug Metabolism and Disposition, 29, 394–400.

    PubMed  CAS  Google Scholar 

  17. Bhandari, S. D., Joshi, S. K., & McMartin, K. E. (1988). Folate binding and transport by rat kidney brush-border membrane vesicles. Biochimica et Biophysica Acta, 937, 211–218.

    PubMed  CAS  Google Scholar 

  18. Chancy, C. D., Kekuda, R., Huang, W., Prasad, P. D., Kuhnel, J. M., Sirotnak, F. M., et al. (2000). Expression and differential polarization of the reduced-folate transporter-1 and the folate receptor alpha in mammalian retinal pigment epithelium. Journal of Biological Chemistry, 275, 20676–20684.

    Article  PubMed  CAS  Google Scholar 

  19. Cai, S., & Horne, D. W. (2003). Transport of 5-formyltetrahydrofolate into primary cultured rat astrocytes. Archives of Biochemistry and Biophysics, 410, 161–166.

    Article  PubMed  CAS  Google Scholar 

  20. Cai, S., & Horne, D. W. (2003). Transport of 5-formyltetrahydrofolate into primary cultured cerebellar granule cells. Brain Research, 962, 151–158.

    Article  PubMed  CAS  Google Scholar 

  21. Kumar, C. K., Nguyen, T. T., Gonzales, F. B., & Said, H. M. (1998). Comparison of intestinal folate carrier clone expressed in IEC-6 cells and in Xenopus oocytes. American Journal of Physiology, 274, C289–C294.

    PubMed  CAS  Google Scholar 

  22. Rajgopal, A., Sierra, E. E., Zhao, R., & Goldman, I. D. (2001). Expression of the reduced folate carrier SLC19A1 in IEC-6 cells results in two distinct transport activities. American Journal of Physiology. Cell Physiology, 281, C1579–C1586.

    PubMed  CAS  Google Scholar 

  23. Kumar, C. K., Moyer, M. P., Dudeja, P. K., & Said, H. M. (1997). A protein-tyrosine kinase-regulated, pH-dependent, carrier-mediated uptake system for folate in human normal colonic epithelial cell line NCM460. Journal of Biological Chemistry, 272, 6226–6231.

    Article  PubMed  CAS  Google Scholar 

  24. Vincent, M. L., Russell, R. M., & Sasak, V. (1985). Folic acid uptake characteristics of a human colon carcinoma cell line, Caco-2. A newly-described cellular model for small intestinal epithelium. Human Nutrition. Clinical Nutrition, 39, 355–360.

    PubMed  CAS  Google Scholar 

  25. Hidalgo, I. J., Raub, T. J., & Borchardt, R. T. (1989). Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 96, 736–749.

    PubMed  CAS  Google Scholar 

  26. Kuhnel, J. M., Chiao, J. H., & Sirotnak, F. M. (2000). Contrasting effects of oncogene expression on two carrier-mediated systems internalizing folate compounds in Fisher rat 3T3 cells. Journal of Cellular Physiology, 184, 364–372.

    Article  PubMed  CAS  Google Scholar 

  27. Horne, D. W., & Reed, K. A. (2001). Transport of methotrexate into PC-3 human prostate cancer cells. Archives of Biochemistry and Biophysics, 394, 39–44.

    Article  PubMed  CAS  Google Scholar 

  28. Henderson, G. B., & Strauss, B. P. (1990). Characteristics of a novel transport system for folate compounds in wild-type and methotrexate-resistant L1210 cells. Cancer Research, 50, 1709–1714.

    PubMed  CAS  Google Scholar 

  29. Sierra, E. E., & Goldman, I. D. (1998). Characterization of folate transport mediated by a low pH route in mouse L1210 leukemia cells with defective reduced folate carrier function. Biochemical Pharmacology, 55, 1505–1512.

    Article  PubMed  CAS  Google Scholar 

  30. Assaraf, Y. G., Babani, S., & Goldman, I. D. (1998). Increased activity of a novel low pH folate transporter associated with lipoplilic antifolate resistance in Chinese hamster ovary cells. Journal of Biological Chemistry, 273, 8106–8111.

    Article  PubMed  CAS  Google Scholar 

  31. Keating, E., Lemos, C., Azevedo, I., & Martel, F. (2006). Comparison of folic acid uptake characteristics by human placental choriocarcinoma cells at acidic and physiological pH. Canadian Journal of Physiology and Pharmacology, 84, 247–255.

    Article  PubMed  CAS  Google Scholar 

  32. Assaraf, Y. G., & Goldman, I. D. (1997). Loss of folic acid exporter function with markedly augmented folate accumulation in lipophilic antifolate-resistant mammalian cells. Journal of Biological Chemistry, 272, 17460–17466.

    Article  PubMed  CAS  Google Scholar 

  33. Chiao, J. H., Roy, K., Tolner, B., Yang, C. H., & Sirotnak, F. M. (1997) RFC-1 gene expression regulates folate absorption in mouse small intestine. Journal of Biological Chemistry, 272, 11165–11170.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, Y., Rajgopal, A., Goldman, I. D., & Zhao, R. (2005). Preservation of folate transport activity with a low-pH optimum in rat IEC-6 intestinal epithelial cell lines that lack reduced folate carrier function. American Journal of Physiology. Cell Physiology, 288, C65–C71.

    PubMed  CAS  Google Scholar 

  35. Dixon, K. H., Lanpher, B. C., Chiu, J., Kelley, K., & Cowan, K. H. (1994). A novel cDNA restores reduced folate carrier activity and methotrexate sensitivity to transport deficient cells. Journal of Biological Chemistry, 269, 17–20.

    PubMed  CAS  Google Scholar 

  36. Said, H. M., Nguyen, T. T., Dyer, D. L., Cowan, K. H., & Rubin, S. A. (1996). Intestinal folate transport, identification of a cDNA involved in folate transport and the functional expression and distribution of its mRNA. Biochimica et Biophysica Acta. Biomembranes, 1281, 164–172.

    Article  Google Scholar 

  37. Nguyen, T. T, Dyer, D. L., Dunning, D. D., Rubin, S. A., Grant, K. E., & Said, H. M. (1997). Human intestinal folate transport: Cloning, expression, and distribution of complementary RNA. Gastroenterology, 112, 783–791.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, Y., Zhao, R., & Goldman, I. D. (2004). Characterization of a folate transporter in HeLa cells with a low pH optimum and high affinity for pemetrexed distinct from the reduced folate carrier. Clinical Cancer Research, 10, 6256–6264.

    Article  PubMed  CAS  Google Scholar 

  39. Said, H. M., Chatterjee, N., Haq, R. U., Subramanian, V. S., Ortiz, A., Matherly, L. H., et al. (2000). Adaptive regulation of intestinal folate uptake: effect of dietary folate deficiency. American Journal of Physiology. Cell Physiology, 279, C1889–C1895.

    PubMed  CAS  Google Scholar 

  40. Liu, M., Ge, Y., Cabelof, D. C., Aboukameel, A., Heydari, A. R., Mohammad, R., et al. (2005). Structure and regulation of the murine reduced folate carrier gene: Identification of four noncoding exons and promoters and regulation by dietary folates. Journal of Biological Chemistry, 280, 5588–5597.

    Article  PubMed  CAS  Google Scholar 

  41. Balamurugan, K., & Said, H. M. (2003). Ontogenic regulation of folate transport across rat jejunal brush-border membrane. American Journal of Physiology: Gastrointestinal and Liver Physiology, 285, G1068–G1073.

    PubMed  CAS  Google Scholar 

  42. Ferguson, P. L., & Flintoff, W. F. (1999). Topological and functional analysis of the human reduced folate carrier by hemagglutinin epitope insertion. Journal of Biological Chemistry, 274, 16269–16278.

    Article  PubMed  CAS  Google Scholar 

  43. Balamurugan, K., & Said, H. M. (2006). Role of reduced folate carrier in intestinal folate uptake. American Journal of Physiology. Cell Physiology, 291, C189–C193.

    Article  PubMed  CAS  Google Scholar 

  44. Dutta, B., Huang, W., Molero, M., Kekuda, R., Leibach, F. H., Devoe, L. D., et al. (1999). Cloning of the human thiamine transporter, a member of the folate transporter family. Journal of Biological Chemistry, 274, 31925–31929.

    Article  PubMed  CAS  Google Scholar 

  45. Rajgopal, A., Edmondson, A., Goldman, I. D., & Zhao, R. (2001). SLC19A3 encodes a second thiamine transporter, ThTr2. Biochimica et Biophysica Acta, 1537, 175–178.

    PubMed  CAS  Google Scholar 

  46. Zhao, R., Chattopadhyay, S., Hanscom, M., & Goldman, I. D. (2005). Antifolate resistance in a HeLa cell line associated with impaired transport independent of the reduced folate carrier. Clinical Cancer Research, 10, 8735–8742.

    Article  Google Scholar 

  47. Shayeghi, M., Latunde-Dada, G. O., Oakhill, J. S., Laftah, A. H., Takeuchi, K., Halliday, N., et al. (2005). Identification of an intestinal heme transporter. Cell, 122, 789–801.

    Article  PubMed  CAS  Google Scholar 

  48. Boll, M., Foltz, M., Rubio-Aliaga, I., Kottra, G., & Daniel, H. (2002). Functional characterization of two novel mammalian electrogenic proton-dependent amino acid cotransporters. Journal of Biological Chemistry, 277, 22966–22973.

    Article  PubMed  CAS  Google Scholar 

  49. Fei, Y. J., Kanai, Y., Nussberger, S., Ganapathy, V., Leibach, F. H., Romero, M. F., et al. (1994). Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature, 368, 563–566.

    Article  PubMed  CAS  Google Scholar 

  50. Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., et al. (1997). Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 388, 482–488.

    Article  PubMed  CAS  Google Scholar 

  51. Nozawa, T., Imai, K., Nezu, J., Tsuji, A., & Tamai, I. (2004). Functional characterization of pH-sensitive organic anion transporting polypeptide OATP-B in human. Journal of Pharmacology and Experimental Therapeutics, 308, 438–445.

    Article  PubMed  CAS  Google Scholar 

  52. Geller, J., Kronn, D., Jayabose, S., & Sandoval, C. (2002). Hereditary folate malabsorption: Family report and review of the literature. Medicine (Baltimore), 81, 51–68.

    Article  CAS  Google Scholar 

  53. Ramaekers, V. T., Rothenberg, S. P., Sequeira, J. M., Opladen, T., Blau, N., Quadros, E. V., et al. (2005). Autoantibodies to folate receptors in the cerebral folate deficiency syndrome. New England Journal of Medicine, 352, 1985–1991.

    Article  PubMed  CAS  Google Scholar 

  54. Wu, D., & Pardridge, W. M. (1999). Blood-brain barrier transport of reduced folic acid. Pharmaceutical Research, 16, 415–419.

    Article  PubMed  CAS  Google Scholar 

  55. Spector, R., & Lorenzo, A. V. (1975). Folate transport by the choroid plexus in vitro. Science, 187, 540–542.

    Article  PubMed  CAS  Google Scholar 

  56. Spector, R., & Lorenzo, A. V. (1975). Folate transport in the central nervous system. American Journal of Physiology, 229, 777–782.

    PubMed  CAS  Google Scholar 

  57. Holm, J., Hansen, S. I., Hoier-Madsen, M., & Bostad, L. (1991). High-affinity folate binding in human choroid plexus. Characterization of radioligand binding, immunoreactivity, molecular heterogeneity and hydrophobic domain of the binding protein. Biochemical Journal, 280, 267–271.

    PubMed  CAS  Google Scholar 

  58. Wang, Y., Zhao, R., Russell, R. G., & Goldman, I. D. (2001). Localization of the murine reduced folate carrier as assessed by immunohistochemical analysis. Biochimica et Biophysica Acta, 1513, 49–54.

    PubMed  CAS  Google Scholar 

  59. Anderson R. G. W., Kamen, B. A., Rothberg, K. G., & Lacey, S. W. (1992). Potocytosis: sequestration and transport of small molecules by caveolae. Science, 255, 410–411.

    Article  PubMed  CAS  Google Scholar 

  60. Murphy, R. F., Powers, S., & Cantor, C. R. (1984). Endosome pH measured in single cells by dual fluorescence flow cytometry: Rapid acidification of insulin to pH 6. Journal of Cell Biology, 98, 1757–1762.

    Article  PubMed  CAS  Google Scholar 

  61. Prasad, P. D., Mahesh, V. B., Leibach, F. H., & Ganapathy, V. (1994). Functional coupling between a bafilomycin A1-sensitive proton pump and a probenecid-sensitive folate transporter in human placental choriocarcinoma cells. Biochimica et Biophysica Acta. Molecular Cell Research, 1222, 309–314.

    Article  CAS  Google Scholar 

  62. Boll, M., Daniel, H., & Gasnier, B. (2004). The SLC36 family: Proton-coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis. Pflugers Archiv, 447, 776–779.

    Article  PubMed  CAS  Google Scholar 

  63. Sagne, C., Agulhon, C., Ravassard, P., Darmon, M., Hamon, M., El Mestikawy, S., et al. (2001). Identification and characterization of a lysosomal transporter for small neutral amino acids. Proceedings of the National Academy of Sciences of the United States of America, 98, 7206–7211.

    Article  PubMed  CAS  Google Scholar 

  64. Poncz, M., & Cohen, A. (1996). Long-term treatment of congenital folate malabsorption. Jornal de Pediatria, 129, 948.

    CAS  Google Scholar 

  65. Wike-Hooley, J. L., Haveman, J., & Reinhold, H. S. (1984). The relevance of tumour pH to the treatment of malignant disease. Radiotherapy and Oncology, 2, 343–366.

    PubMed  CAS  Google Scholar 

  66. Helmlinger, G., Yuan, F., Dellian, M., & Jain, R. K. (1997). Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Natural Medicines, 3, 177–182.

    Article  CAS  Google Scholar 

  67. Raghunand, N., Altbach, M. I., van Sluis, R., Baggett, B., Taylor, C. W., Bhujwalla, Z. M., et al. (1999). Plasmalemmal pH-gradients in drug-sensitive and drug-resistant MCF-7 human breast carcinoma xenografts measured by 31P magnetic resonance spectroscopy. Biochemical Pharmacology, 57, 309–312.

    Article  PubMed  CAS  Google Scholar 

  68. Zhao, R., Hanscom, M., Chattopadhyay, S., & Goldman, I. D. (2004). Selective preservation of pemetrexed pharmacological activity in HeLa cells lacking the reduced folate carrier; association with the presence of a secondary transport pathway. Cancer Research, 64, 3313–3319.

    Article  PubMed  CAS  Google Scholar 

  69. Chattopadhyay, S., Zhao, R., Krupenko, S. A., Krupenko, N., & Goldman, I. D. (2006). The inverse relationship between reduced folate carrier function and pemetrexed activity in a human colon cancer cell line. Molecular Cancer Therapeutics, 5, 438–449.

    Article  PubMed  CAS  Google Scholar 

  70. Zhao, R., Gao, F., & Goldman, I. D. (2001). Marked suppression of the activity of some, but not all, antifolate compounds by augmentation of folate cofactor pools within tumor cells. Biochemical Pharmacology, 61, 857–865.

    Article  PubMed  CAS  Google Scholar 

  71. Sievers, G., Hakli, H., Luhtala, J., & Tenhunen, R. (1987). Optical and EPR spectroscopy studies on haem arginate, a new compound used for treatment of porphyria. Chemico-biological Interactions, 63, 105–114.

    Article  PubMed  CAS  Google Scholar 

  72. Pasternack, R. F., Gibbs, E. J., Hoeflin, E., Kosar, W. P., Kubera, G., Skowronek, C. A., et al. (1983). Hemin binding to serum proteins and the catalysis of interprotein transfer. Biochemistry, 22, 1753–1758.

    Article  PubMed  CAS  Google Scholar 

  73. Schmitt, T. H., Frezzatti, W. A., Jr., & Schreier, S. (1993). Hemin-induced lipid membrane disorder and increased permeability: A molecular model for the mechanism of cell lysis. Archives of Biochemistry and Biophysics, 307, 96–103.

    Article  PubMed  CAS  Google Scholar 

  74. Eichholzer, M., Tonz, O., & Zimmermann, R. (2006). Folic acid: A public health challenge. Lancet, 367, 1352–1361.

    Article  PubMed  Google Scholar 

  75. Zhao, R., Babani, S., Gao, F., Liu, L., & Goldman, I. D. (2000). The mechanism of transport of the multitargeted antifolate, MTA-LY231514, and its cross resistance pattern in cell with impaired transport of methotrexate. Clinical Cancer Research, 6, 3687–3695.

    PubMed  CAS  Google Scholar 

  76. Sirotnak, F. M., Chello, P. L., Moccio, D. M., Kisliuk, R. L., Combepine, G., Gaumont, Y., et al. (1979). Stereospecificity at carbon 6 of formyltetrahydrofolate as a competitive inhibitor of transport and cytotoxicity of methotrexate in vitro. Biochemical Pharmacology, 28, 2993–2997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. David Goldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, R., Goldman, I.D. The molecular identity and characterization of a Proton-Coupled Folate Transporter—PCFT; biological ramifications and impact on the activity of pemetrexed—12 06 06. Cancer Metastasis Rev 26, 129–139 (2007). https://doi.org/10.1007/s10555-007-9047-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9047-1

Keywords

Navigation