Skip to main content

Advertisement

Log in

Lipoxygenase metabolism: roles in tumor progression and survival

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The metabolism of arachidonic acid through lipoxygenase pathways leads to the generation of various biologically active eicosanoids. The expression of these enzymes vary throughout the progression of various cancers, and thereby they have been shown to regulate aspects of tumor development. Substantial evidence supports a functional role for lipoxygenase-catalyzed arachidonic and linoleic acid metabolism in cancer development. Pharmacologic and natural inhibitors of lipoxygenases have been shown to suppress carcinogenesis and tumor growth in a number of experimental models. Signaling of hydro[peroxy]fatty acids following arachidonic or linoleic acid metabolism potentially effect diverse biological phenomenon regulating processes such as cell growth, cell survival, angiogenesis, cell invasion, metastatic potential and immunomodulation. However, the effects of distinct LOX isoforms differ considerably with respect to their effects on both the individual mechanisms described and the tumor being examined. 5-LOX and platelet type 12-LOX are generally considered pro-carcinogenic, with the role of 15-LOX-1 remaining controversial, while 15-LOX-2 suppresses carcinogenesis. In this review, we focus on the molecular mechanisms regulated by LOX metabolism in some of the major cancers. We discuss the effects of LOXs on tumor cell proliferation, their roles in cell cycle control and cell death induction, effects on angiogenesis, migration and the immune response, as well as the signal transduction pathways involved in these processes. Understanding the molecular mechanisms underlying the anti-tumor effect of specific, or general, LOX inhibitors may lead to the design of biologically and pharmacologically targeted therapeutic strategies inhibiting LOX isoforms and/or their biologically active metabolites, that may ultimately prove useful in the treatment of cancer, either alone or in combination with conventional therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cuendet, M., & Pezzuto, J. M. (2000). The role of cyclooxygenase and lipoxygenase in cancer chemoprevention. Drug Metabolism and Drug Interactions, 17(1–), 109–57.

    PubMed  CAS  Google Scholar 

  2. Klurfeld, D. M., & Bull, A. W. (1997). Fatty acids and colon cancer in experimental models. American Journal of Clinical Nutrition, 66(6 Suppl), 1530S–538S.

    PubMed  CAS  Google Scholar 

  3. Furstenberger, G., Krieg, P., Muller-Decker, K., & Habenicht, A. J. (2006). What are cyclooxygenases and lipoxygenases doing in the driver’s seat of carcinogenesis? International Journal of Cancer, 119(10), 247–54.

    Article  CAS  Google Scholar 

  4. Krysan, K., Reckamp, K. L., Sharma, S., & Dubinett, S. M. (2006). The potential and rationale for COX-2 inhibitors in lung cancer. Anticancer Agents in Medical Chemistry, 6(3), 209–20.

    Article  CAS  Google Scholar 

  5. Nie, D. (2007). Cyclooxygenases and lipoxygenases in prostate and breast cancers. Frontiers in Bioscience, 12, 1574–585.

    Article  PubMed  CAS  Google Scholar 

  6. Funk, C. D. (2001). Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science, 294(5548), 1871–875.

    Article  PubMed  CAS  Google Scholar 

  7. Krieg, P., Heidt, M., Siebert, M., Kinzig, A., Marks, F., & Furstenberger, G. (2002). Epidermis-type lipoxygenases. Advances in Experimental Medicine and Biology, 507, 165–70.

    PubMed  CAS  Google Scholar 

  8. Yu, Z., Schneider, C., Boeglin, W. E., Marnett, L. J., & Brash, A. R. (2003). The lipoxygenase gene ALOXE3 implicated in skin differentiation encodes a hydroperoxide isomerase. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9162–167.

    Article  PubMed  CAS  Google Scholar 

  9. Funk, C. D. (1993). Molecular biology in the eicosanoid field. Progress in Nucleic Acid Research and Molecular Biology, 45, 67–8.

    Article  PubMed  CAS  Google Scholar 

  10. Fabre, J. E., Goulet, J. L., Riche, E., et al. (2002). Transcellular biosynthesis contributes to the production of leukotrienes during inflammatory responses in vivo. Journal of Clinical Investigation, 109(10), 1373–380.

    PubMed  CAS  Google Scholar 

  11. Kuhn, H., Walther, M., & Kuban, R. J. (2002). Mammalian arachidonate 15-lipoxygenases structure, function, and biological implications. Prostaglandins and Other Lipid Mediators, 68–9, 263–90.

    Article  Google Scholar 

  12. Conrad, D. J. (1999). The arachidonate 12/15 lipoxygenases. A review of tissue expression and biologic function. Clinical Reviews in Allergy and Immunology, 17(1–), 71–9.

    Article  PubMed  CAS  Google Scholar 

  13. Brash, A. R., Boeglin, W. E., & Chang, M. S. (1997). Discovery of a second 15S-lipoxygenase in humans. Proceedings of the National Academy of Sciences of the United States of America, 94(12), 6148–152.

    Article  PubMed  CAS  Google Scholar 

  14. Shureiqi, I., & Lippman, S. M. (2001). Lipoxygenase modulation to reverse carcinogenesis. Cancer Research, 61(17), 6307–312.

    PubMed  CAS  Google Scholar 

  15. van Leyen, K., Duvoisin, R. M., Engelhardt, H., & Wiedmann, M. (1998). A function for lipoxygenase in programmed organelle degradation. Nature, 395(6700), 392–95.

    Article  PubMed  Google Scholar 

  16. Shureiqi, I., Chen, D., Lotan, R., et al. (2000). 15-Lipoxygenase-1 mediates nonsteroidal anti-inflammatory drug-induced apoptosis independently of cyclooxygenase-2 in colon cancer cells. Cancer Research, 60(24), 6846–850.

    PubMed  CAS  Google Scholar 

  17. Norel, X., & Brink, C. (2004). The quest for new cysteinyl-leukotriene and lipoxin receptors: Recent clues. Pharmacology and Therapeutics, 103(1), 81–4.

    Article  PubMed  CAS  Google Scholar 

  18. Michalik, L., Desvergne, B., & Wahli, W. (2004). Peroxisome-proliferator-activated receptors and cancers: Complex stories. Naturalist Review. Cancer, 4(1), 61–0.

    Article  CAS  Google Scholar 

  19. Catalano, A., & Procopio, A. (2005). New aspects on the role of lipoxygenases in cancer progression. Histology and Histopathology, 20(3), 969–75.

    PubMed  CAS  Google Scholar 

  20. Shureiqi, I., Wojno, K. J., Poore, J. A., et al. (1999). Decreased 13-S-hydroxyoctadecadienoic acid levels and 15-lipoxygenase-1 expression in human colon cancers. Carcinogenesis, 20(10), 1985–995.

    Article  PubMed  CAS  Google Scholar 

  21. Subbarayan, V., Xu, X. C., Kim, J., et al. (2005). Inverse relationship between 15-lipoxygenase-2 and PPAR-gamma gene expression in normal epithelia compared with tumor epithelia. Neoplasia, 7(3), 280–93.

    Article  PubMed  CAS  Google Scholar 

  22. Gonzalez, A. L., Roberts, R. L., Massion, P. P., Olson, S. J., Shyr, Y., & Shappell, S. B. (2004). 15-Lipoxygenase-2 expression in benign and neoplastic lung: An immunohistochemical study and correlation with tumor grade and proliferation. Human Pathology, 35(7), 840–49.

    Article  PubMed  CAS  Google Scholar 

  23. Shappell, S. B., Boeglin, W. E., Olson, S. J., Kasper, S., & Brash, A. R. (1999). 15-lipoxygenase-2 (15-LOX-2) is expressed in benign prostatic epithelium and reduced in prostate adenocarcinoma. American Journal of Pathology, 155(1), 235–45.

    PubMed  CAS  Google Scholar 

  24. Tang, D. G., Bhatia, B., Tang, S., & Schneider-Broussard, R. (2007). 15-lipoxygenase 2 (15-LOX2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size). Prostaglandins and Other Lipid Mediators, 82(1–), 135–46.

    Article  PubMed  CAS  Google Scholar 

  25. Chen, X., Wang, S., Wu, N., et al. (2004). Overexpression of 5-lipoxygenase in rat and human esophageal adenocarcinoma and inhibitory effects of zileuton and celecoxib on carcinogenesis. Clinical Cancer Research, 10(19), 6703–709.

    Article  PubMed  CAS  Google Scholar 

  26. Jiang, W. G., Douglas-Jones, A., & Mansel, R. E. (2003). Levels of expression of lipoxygenases and cyclooxygenase-2 in human breast cancer. Prostaglandins, Leukotrienes and Essential Fatty Acids, 69(4), 275–81.

    Article  CAS  Google Scholar 

  27. Ohd, J. F., Nielsen, C. K., Campbell, J., Landberg, G., Lofberg, H., & Sjolander, A. (2003). Expression of the leukotriene D4 receptor CysLT1, COX-2, and other cell survival factors in colorectal adenocarcinomas. Gastroenterology, 124(1), 57–0.

    Article  PubMed  CAS  Google Scholar 

  28. Gupta, S., Srivastava, M., Ahmad, N., Sakamoto, K., Bostwick, D. G., & Mukhtar, H. (2001). Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer, 91(4), 737–43.

    Article  PubMed  CAS  Google Scholar 

  29. Gao, X., Grignon, D. J., Chbihi, T., et al. (1995). Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urology, 46(2), 227–37.

    Article  PubMed  CAS  Google Scholar 

  30. Kim, E., Rundhaug, J. E., Benavides, F., Yang, P., Newman, R. A., & Fischer, S. M. (2005). An antitumorigenic role for murine 8S-lipoxygenase in skin carcinogenesis. Oncogene, 24(7), 1174–187.

    Article  PubMed  CAS  Google Scholar 

  31. Muller, K., Siebert, M., Heidt, M., Marks, F., Krieg, P., & Furstenberger, G. (2002). Modulation of epidermal tumor development caused by targeted overexpression of epidermis-type 12S-lipoxygenase. Cancer Research, 62(16), 4610–616.

    PubMed  CAS  Google Scholar 

  32. Jiang, W. G., Watkins, G., Douglas-Jones, A., & Mansel, R. E. (2006). Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins, Leukotrienes and Essential Fatty Acids, 74(4), 235–45.

    Article  CAS  Google Scholar 

  33. Jiang, W. G., Douglas-Jones, A. G., & Mansel, R. E. (2006). Aberrant expression of 5-lipoxygenase-activating protein (5-LOXAP) has prognostic and survival significance in patients with breast cancer. Prostaglandins, Leukotrienes and Essential Fatty Acids, 74(2), 125–34.

    Article  CAS  Google Scholar 

  34. Shureiqi, I., Wu, Y., Chen, D., et al. (2005). The critical role of 15-lipoxygenase-1 in colorectal epithelial cell terminal differentiation and tumorigenesis. Cancer Research, 65(24), 11486–1492.

    Article  PubMed  CAS  Google Scholar 

  35. Nithipatikom, K., Isbell, M. A., See, W. A., & Campbell, W. B. (2006). Elevated 12- and 20-hydroxyeicosatetraenoic acid in urine of patients with prostatic diseases. Cancer Letters, 233(2), 219–25.

    Article  PubMed  CAS  Google Scholar 

  36. Kelavkar, U. P., Cohen, C., Kamitani, H., Eling, T. E., & Badr, K. F. (2000). Concordant induction of 15-lipoxygenase-1 and mutant p53 expression in human prostate adenocarcinoma: Correlation with Gleason staging. Carcinogenesis, 21(10), 1777–787.

    Article  PubMed  CAS  Google Scholar 

  37. Hong, S. H., Avis, I., Vos, M. D., Martinez, A., Treston, A. M., & Mulshine, J. L. (1999). Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. Cancer Research, 59(9), 2223–228.

    PubMed  CAS  Google Scholar 

  38. Nie, D., Krishnamoorthy, S., Jin, R., et al. (2006). Mechanisms regulating tumor angiogenesis by 12-lipoxygenase in prostate cancer cells. Journal of Biological Chemistry, 281(27), 18601–8609.

    Article  PubMed  CAS  Google Scholar 

  39. Ye, Y. N., Wu, W. K., Shin, V. Y., & Cho, C. H. (2005). A mechanistic study of colon cancer growth promoted by cigarette smoke extract. European Journal of Pharmacology, 519(1–), 52–7.

    Article  PubMed  CAS  Google Scholar 

  40. Gately, S. (2000). The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer and Metastasis Reviews, 19(1–), 19–7.

    Article  PubMed  CAS  Google Scholar 

  41. Cao, Y., Pearman, A. T., Zimmerman, G. A., McIntyre, T. M., & Prescott, S. M. (2000). Intracellular unesterified arachidonic acid signals apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 97(21), 11280–1285.

    Article  PubMed  CAS  Google Scholar 

  42. Cianchi, F., Cortesini, C., Magnelli, L., et al. (2006). Inhibition of 5-lipoxygenase by MK886 augments the antitumor activity of celecoxib in human colon cancer cells. Molecular Cancer Therapeutics, 5(11), 2716–726.

    Article  PubMed  CAS  Google Scholar 

  43. Gregor, J. I., Kilian, M., Heukamp, I., et al. (2005). Effects of selective COX-2 and 5-LOX inhibition on prostaglandin and leukotriene synthesis in ductal pancreatic cancer in Syrian hamster. Prostaglandins, Leukotrienes and Essential Fatty Acids, 73(2), 89–7.

    Article  CAS  Google Scholar 

  44. Teicher, B. A., Korbut, T. T., Menon, K., Holden, S. A., & Ara, G. (1994). Cyclooxygenase and lipoxygenase inhibitors as modulators of cancer therapies. Cancer Chemotherapy and Pharmacology, 33(6), 515–22.

    Article  PubMed  CAS  Google Scholar 

  45. Duffy, C. P., Elliott, C. J., O’Connor, R. A., et al. (1998). Enhancement of chemotherapeutic drug toxicity to human tumour cells in vitro by a subset of non-steroidal anti-inflammatory drugs (NSAIDs). European Journal of Cancer, 34(8), 1250–259.

    Article  PubMed  CAS  Google Scholar 

  46. Soriano, A. F., Helfrich, B., Chan, D. C., Heasley, L. E., Bunn, P. A., Jr., & Chou, T. C. (1999). Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell lines. Cancer Research, 59(24), 6178–184.

    PubMed  CAS  Google Scholar 

  47. Brash, A. R. (1999). Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. Journal of Biological Chemistry, 274(34), 23679–3682.

    Article  PubMed  CAS  Google Scholar 

  48. Ihara, A., Wada, K., Yoneda, M., Fujisawa, N., Takahashi, H., & Nakajima, A. (2007). Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. Journal of Pharmacology Science, 103(1), 24–2.

    Article  CAS  Google Scholar 

  49. Ye, Y. N., Liu, E. S., Shin, V. Y., Wu, W. K., & Cho, C. H. (2004). The modulating role of nuclear factor-kappaB in the action of alpha7-nicotinic acetylcholine receptor and cross-talk between 5-lipoxygenase and cyclooxygenase-2 in colon cancer growth induced by 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone. Journal of Pharmacology and Experimental Therapeutics, 311(1), 123–30.

    Article  PubMed  CAS  Google Scholar 

  50. Ye, Y. N., Liu, E. S., Shin, V. Y., Wu, W. K., & Cho C. H. (2004). Contributory role of 5-lipoxygenase and its association with angiogenesis in the promotion of inflammation-associated colonic tumorigenesis by cigarette smoking. Toxicology, 203(1–), 179–88.

    Article  PubMed  CAS  Google Scholar 

  51. Kandouz, M., Nie, D., Pidgeon, G. P., Krishnamoorthy, S., Maddipati, K. R., & Honn K. V. (2003). Platelet-type 12-lipoxygenase activates NF-kappaB in prostate cancer cells. Prostaglandins and Other Lipid Mediators, 71(3–), 189–04.

    Article  PubMed  CAS  Google Scholar 

  52. Hsi, L. C., Wilson, L. C., & Eling, T. E. (2002). Opposing effects of 15-lipoxygenase-1 and -2 metabolites on MAPK signaling in prostate. Alteration in peroxisome proliferator-activated receptor gamma. Journal of Biological Chemistry, 277(43), 40549–0556.

    Article  PubMed  CAS  Google Scholar 

  53. Hassan, S., & Carraway, R. E. (2006). Involvement of arachidonic acid metabolism and EGF receptor in neurotensin-induced prostate cancer PC3 cell growth. Regulatory Peptide, 133(1–), 105–14.

    Article  CAS  Google Scholar 

  54. Yoshinaga, M., Buchanan, F. G., & DuBois, R. N. (2004). 15-LOX-1 inhibits p21 (Cip/WAF 1) expression by enhancing MEK-ERK 1/2 signaling in colon carcinoma cells. Prostaglandins and Other Lipid Mediators, 73(1–), 111–22.

    Article  PubMed  CAS  Google Scholar 

  55. Ding, X. Z., Tong, W. G., & Adrian, T. E. (2001). 12-lipoxygenase metabolite 12(S)-HETE stimulates human pancreatic cancer cell proliferation via protein tyrosine phosphorylation and ERK activation. International Journal of Cancer, 94(5), 630–36.

    Article  CAS  Google Scholar 

  56. Sharma, G. D., Ottino, P., Bazan, N. G., & Bazan, H. E. (2005). Epidermal and hepatocyte growth factors, but not keratinocyte growth factor, modulate protein kinase Calpha translocation to the plasma membrane through 15(S)-hydroxyeicosatetraenoic acid synthesis. Journal of Biological Chemistry, 280(9), 7917–924.

    Article  PubMed  CAS  Google Scholar 

  57. Nie, D., & Honn, K. V. (2002). Cyclooxygenase, lipoxygenase and tumor angiogenesis. Cellular and Molecular Life Sciences, 59(5), 799–07.

    Article  PubMed  CAS  Google Scholar 

  58. Szekeres, C. K., Tang, K., Trikha, M., & Honn, K. V. (2000). Eicosanoid activation of extracellular signal-regulated kinase1/2 in human epidermoid carcinoma cells. Journal of Biological Chemistry, 275(49), 38831–8841.

    Article  PubMed  CAS  Google Scholar 

  59. Szekeres, C. K., Trikha, M., Nie, D., & Honn, K. V. (2000). Eicosanoid 12(S)-HETE activates phosphatidylinositol 3-kinase. Biochemical and Biophysical Research Communications, 275(2), 690–95.

    Article  PubMed  CAS  Google Scholar 

  60. Tong, W. G., Ding, X. Z., & Adrian, T. E. (2002). The mechanisms of lipoxygenase inhibitor-induced apoptosis in human breast cancer cells. Biochemical and Biophysical Research Communications, 296(4), 942–48.

    Article  PubMed  CAS  Google Scholar 

  61. Hoque, A., Lippman, S. M., Wu, T. T., et al. (2005). Increased 5-lipoxygenase expression and induction of apoptosis by its inhibitors in esophageal cancer: A potential target for prevention. Carcinogenesis, 26(4), 785–91.

    Article  PubMed  CAS  Google Scholar 

  62. Leung, H. W., Yang, W. H., Lai, M. Y., Lin, C. J., & Lee, H. Z. (2007). Inhibition of 12-lipoxygenase during baicalein-induced human lung nonsmall carcinoma H460 cell apoptosis. Food and Chemical Toxicology, 45(3), 403–11.

    Article  PubMed  CAS  Google Scholar 

  63. Pidgeon, G. P., Kandouz, M., Meram, A., & Honn, K. V. (2002). Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Research, 62(9), 2721–727.

    PubMed  CAS  Google Scholar 

  64. Harbour, J. W., & Dean, D. C. (2000). Rb function in cell-cycle regulation and apoptosis. Nature Cell Biology, 2(4), E65’E67.

    Article  PubMed  CAS  Google Scholar 

  65. Yu, M. K., Moos, P. J., Cassidy, P., Wade, M., & Fitzpatrick, F. A. (2004). Conditional expression of 15-lipoxygenase-1 inhibits the selenoenzyme thioredoxin reductase: Modulation of selenoproteins by lipoxygenase enzymes. Journal of Biological Chemistry, 279(27), 28028–8035.

    Article  PubMed  CAS  Google Scholar 

  66. Datta, S. R., Dudek, H., Tao, X., et al. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 91(2), 231–41.

    Article  PubMed  CAS  Google Scholar 

  67. Muise-Helmericks, R. C., Grimes, H. L., Bellacosa, A., Malstrom, S. E., Tsichlis, P. N., & Rosen, N. (1998). Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. Journal of Biological Chemistry, 273(45), 29864–9872.

    Article  PubMed  CAS  Google Scholar 

  68. Sauter, E. R., Nesbit, M., Litwin, S., Klein-Szanto, A. J., Cheffetz, S., & Herlyn, M. (1999). Antisense cyclin D1 induces apoptosis and tumor shrinkage in human squamous carcinomas. Cancer Research, 59(19), 4876–881.

    PubMed  CAS  Google Scholar 

  69. Catalano, A., Rodilossi, S., Caprari, P., Coppola, V., & Procopio, A. (2005). 5-Lipoxygenase regulates senescence-like growth arrest by promoting ROS-dependent p53 activation. EMBO Journal, 24(1), 170–79.

    Article  PubMed  CAS  Google Scholar 

  70. Ou, D., Bonomi, P., Jao, W., Jadko, S., Harris, J. E., & Anderson, K. M. (2001). The mode of cell death in H-358 lung cancer cells cultured with inhibitors of 5-lipoxygenase or the free radical spin trap, NTBN. Cancer Letters, 166(2), 223–31.

    Article  PubMed  CAS  Google Scholar 

  71. Folkman, J., & Klagsbrun, M. (1987). Angiogenic factors. Science, 235(4787), 442–47.

    Article  PubMed  CAS  Google Scholar 

  72. Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 6(4), 389–95.

    Article  CAS  Google Scholar 

  73. Bergers, G., & Benjamin L. E. (2003). Tumorigenesis and the angiogenic switch. Naturalist Review. Cancer, 3(6), 401–10.

    PubMed  CAS  Google Scholar 

  74. Ferrara, N. (2002). VEGF and the quest for tumour angiogenesis factors. Naturalist Review. Cancer, 2(10), 795–03.

    Article  CAS  Google Scholar 

  75. Pages, G., & Pouyssegur, J. (2005). Transcriptional regulation of the Vascular Endothelial Growth Factor gene’a concert of activating factors. Cardiovascular Research, 65(3), 564–73.

    Article  PubMed  CAS  Google Scholar 

  76. Rose, D. P., & Connolly, J. M. (2000). Regulation of tumor angiogenesis by dietary fatty acids and eicosanoids. Nutrition and Cancer, 37(2), 119–27.

    Article  PubMed  CAS  Google Scholar 

  77. Nie, D., Hillman, G. G., Geddes, T., et al. (1998). Platelet-type 12-lipoxygenase in a human prostate carcinoma stimulates angiogenesis and tumor growth. Cancer Research, 58(18), 4047–051.

    PubMed  CAS  Google Scholar 

  78. Tang, D. G., Renaud, C., Stojakovic, S., Diglio, C. A., Porter, A., & Honn, K. V. (1995). 12(S)-HETE is a mitogenic factor for microvascular endothelial cells: Its potential role in angiogenesis. Biochemical and Biophysical Research Communications, 211(2), 462–68.

    Article  PubMed  CAS  Google Scholar 

  79. Nie, D., Tang, K., Diglio, C., & Honn, K. V. (2000). Eicosanoid regulation of angiogenesis: Role of endothelial arachidonate 12-lipoxygenase. Blood, 95(7), 2304–311.

    PubMed  CAS  Google Scholar 

  80. Tang, D. G., Grossi, I. M., Chen, Y. Q., Diglio, C. A., & Honn, K. V. (1993). 12(S)-HETE promotes tumor-cell adhesion by increasing surface expression of alpha V beta 3 integrins on endothelial cells. International Journal of Cancer, 54(1), 102–11.

    Article  CAS  Google Scholar 

  81. Tang, D. G., Diglio, C. A., & Honn, K. V. (1993). 12(S)-HETE-induced microvascular endothelial cell retraction results from PKC-dependent rearrangement of cytoskeletal elements and alpha V beta 3 integrins. Prostaglandins, 45(3), 249–67.

    Article  PubMed  CAS  Google Scholar 

  82. Honn, K. V., Grossi, I. M., Diglio, C. A., Wojtukiewicz, M., & Taylor, J. D. (1989). Enhanced tumor cell adhesion to the subendothelial matrix resulting from 12(S)-HETE-induced endothelial cell retraction. FASEB Journal, 3(11), 2285–293.

    PubMed  CAS  Google Scholar 

  83. McCabe, N. P., Selman, S. H., & Jankun, J. (2006). Vascular endothelial growth factor production in human prostate cancer cells is stimulated by overexpression of platelet 12-lipoxygenase. Prostate, 66(7), 779–87.

    Article  PubMed  CAS  Google Scholar 

  84. Harats, D., Ben-Shushan, D., Cohen, H., et al. (2005). Inhibition of carcinogenesis in transgenic mouse models over-expressing 15-lipoxygenase in the vascular wall under the control of murine preproendothelin-1 promoter. Cancer Letters, 229(1), 127–34.

    Article  PubMed  CAS  Google Scholar 

  85. Bissell, M. J., Weaver, V. M., Lelievre, S. A., Wang, F., Petersen, O. W., & Schmeichel, K. L. (1999). Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Research, 59(7 Suppl), 1757–763s; discussion 63s–4s.

    CAS  Google Scholar 

  86. Giancotti, F. G., & Ruoslahti, E. (1999). Integrin signaling. Science, 285(5430), 1028–032.

    Article  PubMed  CAS  Google Scholar 

  87. Howe, A., Aplin, A. E., Alahari, S. K., & Juliano, R. L. (1998). Integrin signaling and cell growth control. Current Opinion in Cell Biology, 10(2), 220–31.

    Article  PubMed  CAS  Google Scholar 

  88. Clark, E. A., & Brugge, J. S. (1995). Integrins and signal transduction pathways: The road taken. Science, 268(5208), 233–39.

    Article  PubMed  CAS  Google Scholar 

  89. Felsenfeld, D. P., Choquet, D., & Sheetz, M. P. (1996). Ligand binding regulates the directed movement of beta1 integrins on fibroblasts. Nature, 383(6599), 438–40.

    Article  PubMed  CAS  Google Scholar 

  90. Gilmore, A. P., & Burridge, K. (1996). Molecular mechanisms for focal adhesion assembly through regulation of protein’protein interactions. Structure, 4(6), 647–51.

    Article  PubMed  CAS  Google Scholar 

  91. Brassard, D. L., Maxwell, E., Malkowski, M., Nagabhushan, T. L. Kumar, C. C., & Armstrong, L. (1999). Integrin alpha(v)beta(3)-mediated activation of apoptosis. Experimental Cell Research, 251(1), 33–5.

    Article  PubMed  CAS  Google Scholar 

  92. Erdreich-Epstein, A., Shimada, H., Groshen, S., et al. (2000). Integrins alpha(v)beta3 and alpha(v)beta5 are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased endogenous ceramide. Cancer Research, 60(3), 712–21.

    PubMed  CAS  Google Scholar 

  93. Noti, J. D., & Johnson, A. K. (2001). Integrin alpha 5 beta 1 suppresses apoptosis triggered by serum starvation but not phorbol ester in MCF-7 breast cancer cells that overexpress protein kinase C-alpha. International Journal of Oncology, 18(1), 195–01.

    PubMed  CAS  Google Scholar 

  94. Uhm, J. H., Dooley, N. P., Kyritsis, A. P., Rao, J. S., & Gladson, C. L. (1999). Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Clinical Cancer Research, 5(6), 1587–594.

    PubMed  CAS  Google Scholar 

  95. Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. H., & Downward, J. (1997). Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO Journal, 16(10), 2783–793.

    Article  PubMed  CAS  Google Scholar 

  96. Dominguez-Jimenez, C., Diaz-Gonzalez, F., Gonzalez-Alvaro, I., Cesar, J. M., & Sanchez-Madrid, F. (1999). Prevention of alphaII(b)beta3 activation by non-steroidal antiinflammatory drugs. FEBS Letters, 446(2–), 318–22.

    Article  PubMed  CAS  Google Scholar 

  97. Dormond, O., Bezzi, M., Mariotti, A., & Ruegg, C. (2002). Prostaglandin E2 promotes integrin alpha Vbeta 3-dependent endothelial cell adhesion, rac-activation, and spreading through cAMP/PKA-dependent signaling. Journal of Biological Chemistry, 277(48), 45838–5846.

    Article  PubMed  CAS  Google Scholar 

  98. Raso, E., Tovari, J., Toth, K., et al. (2001). Ectopic alphaIIbbeta3 integrin signaling involves 12-lipoxygenase- and PKC-mediated serine phosphorylation events in melanoma cells. Thrombosis and Haemostasis, 85(6), 1037–042.

    PubMed  CAS  Google Scholar 

  99. Patricia, M. K., Kim, J. A., Harper, C. M., et al. (1999). Lipoxygenase products increase monocyte adhesion to human aortic endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(11), 2615–622.

    PubMed  CAS  Google Scholar 

  100. Tang, K., Finley, R. L., Jr., Nie, D., & Honn, K. V. (2000). Identification of 12-lipoxygenase interaction with cellular proteins by yeast two-hybrid screening. Biochemistry, 39(12), 3185–191.

    Article  PubMed  CAS  Google Scholar 

  101. Pidgeon, G. P., Tang, K., Cai, Y. L., Piasentin, E., & Honn, K. V. (2003). Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing alpha(v)beta(3) and alpha(v)beta(5) integrin expression. Cancer Research, 63(14), 4258–267.

    PubMed  CAS  Google Scholar 

  102. Lewis, J. M., Cheresh, D. A., & Schwartz, M. A. (1996). Protein kinase C regulates alpha v beta 5-dependent cytoskeletal associations and focal adhesion kinase phosphorylation. Journal of Cell Biology, 134(5), 1323–332.

    Article  PubMed  CAS  Google Scholar 

  103. Tang, D. G., Diglio, C. A., Bazaz, R., & Honn, K. V. (1995). Transcriptional activation of endothelial cell integrin alpha v by protein kinase C activator 12(S)-HETE. Journal of Cell Science, 108(Pt 7), 2629–644.

    PubMed  CAS  Google Scholar 

  104. Palmantier, R., Roberts, J. D., Glasgow, W. C., Eling, T., & Olden, K. (1996). Regulation of the adhesion of a human breast carcinoma cell line to type IV collagen and vitronectin: Roles for lipoxygenase and protein kinase C. Cancer Research, 56(9), 2206–212.

    PubMed  CAS  Google Scholar 

  105. Paine, E., Palmantier, R., Akiyama, S. K., Olden, K., & Roberts, J. D. (2000). Arachidonic acid activates mitogen-activated protein (MAP) kinase-activated protein kinase 2 and mediates adhesion of a human breast carcinoma cell line to collagen type IV through a p38 MAP kinase-dependent pathway. Journal of Biological Chemistry, 275(15), 11284–1290.

    Article  PubMed  CAS  Google Scholar 

  106. Palmantier, R., George, M. D., Akiyama, S. K., Wolber, F. M., Olden, K., & Roberts, J. D. (2001). Cis-polyunsaturated fatty acids stimulate beta1 integrin-mediated adhesion of human breast carcinoma cells to type IV collagen by activating protein kinases C-epsilon and -mu. Cancer Research, 61(6), 2445–452.

    PubMed  CAS  Google Scholar 

  107. Nony, P. A., Kennett, S. B., Glasgow, W. C., Olden, K., & Roberts, J. D. (2005). 15S-Lipoxygenase-2 mediates arachidonic acid-stimulated adhesion of human breast carcinoma cells through the activation of TAK1, MKK6, and p38 MAPK. Journal of Biological Chemistry, 280(36), 31413–1419.

    Article  PubMed  CAS  Google Scholar 

  108. Taylor, P. M., Woodfield, R. J., Hodgkin, M. N., et al. (2002). Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. Oncogene, 21(37), 5765–772.

    Article  PubMed  CAS  Google Scholar 

  109. Fiorucci, S., Distrutti, E., Mencarelli, A., et al. (2003). Evidence that 5-lipoxygenase and acetylated cyclooxygenase 2-derived eicosanoids regulate leukocyte’endothelial adherence in response to aspirin. British Journal of Pharmacology, 139(7), 1351–359.

    Article  PubMed  CAS  Google Scholar 

  110. Timar, J., Tovari, J., Raso, E., Meszaros, L., Bereczky, B., & Lapis, K. (2005). Platelet-mimicry of cancer cells: Epiphenomenon with clinical significance. Oncology, 69(3), 185–01.

    Article  PubMed  Google Scholar 

  111. Nie, D., Nemeth, J., Qiao, Y., et al. (2003). Increased metastatic potential in human prostate carcinoma cells by overexpression of arachidonate 12-lipoxygenase. Clinical & Experimental Metastasis, 20(7), 657–63.

    Article  CAS  Google Scholar 

  112. Harizi, H., Juzan, M., Pitard, V., Moreau, J. F., & Gualde, N. (2002). Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. Journal of Immunology, 168(5), 2255–263.

    CAS  Google Scholar 

  113. Stolina, M., Sharma, S., Lin, Y., et al. (2000). Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. Journal of Immunology, 164(1), 361–70.

    CAS  Google Scholar 

  114. Legler, D. F., Krause, P., Scandella, E., Singer, E., & Groettrup, M. (2006). Prostaglandin E2 is generally required for human dendritic cell migration and exerts its effect via EP2 and EP4 receptors. Journal of Immunology, 176(2), 966–73.

    CAS  Google Scholar 

  115. Huang, M., Stolina, M., Sharma, S., et al. (1998). Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: Up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Research, 58(6), 1208–216.

    PubMed  CAS  Google Scholar 

  116. Mitsuhashi, M., Liu, J., Cao, S., Shi, X., & Ma, X. (2004). Regulation of interleukin-12 gene expression and its anti-tumor activities by prostaglandin E2 derived from mammary carcinomas. Journal of Leukocyte Biology, 76(2), 322–32.

    Article  PubMed  CAS  Google Scholar 

  117. Snijdewint, F. G., Kalinski, P., Wierenga, E. A., Bos, J. D., & Kapsenberg, M. L. (1993). Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. Journal of Immunology, 150(12), 5321–329.

    CAS  Google Scholar 

  118. Uyttenhove, C., Pilotte, L., Theate, I., et al. (2003). Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Medicine, 9(10), 1269–274.

    Article  PubMed  CAS  Google Scholar 

  119. Mellor, A. L., Keskin, D. B., Johnson, T., Chandler, P., & Munn, D. H. (2002). Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. Journal of Immunology, 168(8), 3771–776.

    CAS  Google Scholar 

  120. Basu, G. D., Tinder, T. L., & Bradley, J. M., et al. (2006). Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: Role of IDO. Journal of Immunology, 177(4), 2391–402.

    CAS  Google Scholar 

  121. Mills, K. H. (2004). Regulatory T cells: Friend or foe in immunity to infection? Nature Reviews. Immunology, 4(11), 841–55.

    Article  PubMed  CAS  Google Scholar 

  122. Baratelli, F., Lin, Y., Zhu, L., et al. (2005). Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. Journal of Immunology, 175(3), 1483–490.

    CAS  Google Scholar 

  123. Claria, J., & Romano, M. (2005). Pharmacological intervention of cyclooxygenase-2 and 5-lipoxygenase pathways. Impact on inflammation and cancer. Current Pharmaceutical Design, 11(26), 3431–447.

    Article  PubMed  CAS  Google Scholar 

  124. Leone, S., Ottani, A., & Bertolini, A. (2007). Dual acting anti-inflammatory drugs. Current Topics in Medical Chemistry, 7(3), 265–75.

    Article  CAS  Google Scholar 

  125. Gilroy, D. W., Tomlinson, A., & Willoughby, D. A. (1998). Differential effects of inhibitors of cyclooxygenase (cyclooxygenase 1 and cyclooxygenase 2) in acute inflammation. European Journal of Pharmacology, 355(2–), 211–17.

    Article  PubMed  CAS  Google Scholar 

  126. Samuelsson, B., Dahlen, S. E., Lindgren, J. A., Rouzer, C. A., & Serhan, C. N. (1987). Leukotrienes and lipoxins: Structures, biosynthesis, and biological effects. Science, 237(4819), 1171–176.

    Article  PubMed  CAS  Google Scholar 

  127. Tager, A. M., Bromley, S. K., Medoff, B. D., et al. (2003). Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nature Immunology, 4(10), 982–90.

    Article  PubMed  CAS  Google Scholar 

  128. Islam, S. A., Thomas, S. Y., Hess, C., et al. (2006). The leukotriene B4 lipid chemoattractant receptor BLT1 defines antigen-primed T cells in humans. Blood, 107(2), 444–53.

    Article  PubMed  CAS  Google Scholar 

  129. Taube, C., Miyahara, N., Ott, V., et al. (2006). The leukotriene B4 receptor (BLT1) is required for effector CD8+ T cell-mediated, mast cell-dependent airway hyperresponsiveness. Journal of Immunology, 176(5), 3157–164.

    CAS  Google Scholar 

  130. Miyahara, N., Takeda, K., Miyahara, S., et al. (2005). Requirement for leukotriene B4 receptor 1 in allergen-induced airway hyperresponsiveness. American Journal of Respiratory and Critical Care Medicine, 172(2), 161–67.

    Article  PubMed  Google Scholar 

  131. Morita, H., Takeda, K., Yagita, H., & Okumura, K. (1999). Immunosuppressive effect of leukotriene B(4) receptor antagonist in vitro. Biochemical and Biophysical Research Communications, 264(2), 321–26.

    Article  PubMed  CAS  Google Scholar 

  132. Yamaoka, K. A., Claesson, H. E., & Rosen, A. (1989). Leukotriene B4 enhances activation, proliferation, and differentiation of human B lymphocytes. Journal of Immunology, 143(6), 1996–000.

    CAS  Google Scholar 

  133. Gagnon, L., Girard, M., Sullivan, A. K., & Rola-Pleszczynski, M. (1987). Augmentation of human natural cytotoxic cell activity by leukotriene B4 mediated by enhanced effector-target cell binding and increased lytic efficiency. Cellular Immunology, 110(2), 243–52.

    Article  PubMed  CAS  Google Scholar 

  134. Gualde, N., Cogny van Weydevelt, F., Buffiere, F., Jauberteau, M. O., Daculsi, R., & Vaillier, D. (1991). Influence of LTB4 on CD4-, CD8- thymocytes. Evidence that LTB4 plus IL-2 generate CD8+ suppressor thymocytes involved in tolerance to self. Effect of LTB4 and IL-2 on double negative thymocytes. Thymus, 18(2), 111–28.

    PubMed  CAS  Google Scholar 

  135. Juzan, M., Guibert, F., & Gualde, N. (1998). Inhibition of graft-versus-host reaction by treatment of immature thymocytes with eicosanoids. Prostaglandins, Leukotrienes and Essential Fatty Acids, 58(1), 69–5.

    Article  CAS  Google Scholar 

  136. Robbiani, D. F., Finch, R. A., Jager, D., Muller, W. A., Sartorelli, A. C., & Randolph, G. J. (2000). The leukotriene C(4) transporter MRP1 regulates CCL19 (MIP-3beta, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell, 103(5), 757–8.

    Article  PubMed  CAS  Google Scholar 

  137. Lamoureux, J., Stankova, J., & Rola-Pleszczynski, M. (2006). Leukotriene D4 enhances immunoglobulin production in CD40-activated human B lymphocytes. Journal of Allergy and Clinical Immunology, 117(4), 924–30.

    Article  PubMed  CAS  Google Scholar 

  138. Prinz, I., Gregoire, C., Mollenkopf, H., et al. (2005). The type 1 cysteinyl leukotriene receptor triggers calcium influx and chemotaxis in mouse alpha beta- and gamma delta effector T cells. Journal of Immunology, 175(2), 713–19.

    CAS  Google Scholar 

  139. Wen, Y., Gu, J., Chakrabarti, S. K., et al. (2007). The role of 12/15-lipoxygenase in the expression of interleukin-6 and tumor necrosis factor-alpha in macrophages. Endocrinology, 148(3), 1313–322.

    Article  PubMed  CAS  Google Scholar 

  140. Aliberti, J., Hieny, S., Reis e Sousa, C., Serhan, C. N., & Sher, A. (2002). Lipoxin-mediated inhibition of IL-12 production by DCs: A mechanism for regulation of microbial immunity. Nature Immunology, 3(1), 76–2.

    Article  PubMed  CAS  Google Scholar 

  141. Willson, T. M., Lehmann, J. M., & Kliewer, S. A. (1996). Discovery of ligands for the nuclear peroxisome proliferator-activated receptors. Annals of the New York Academy of Sciences, 804, 276–83.

    Article  PubMed  CAS  Google Scholar 

  142. Appel, S., Mirakaj, V., Bringmann, A., Weck, M. M., Grunebach, F., & Brossart, P. (2005). PPAR-gamma agonists inhibit toll-like receptor-mediated activation of dendritic cells via the MAP kinase and NF-kappaB pathways. Blood, 106(12), 3888–894.

    Article  PubMed  CAS  Google Scholar 

  143. Yang, X. Y., Wang, L. H., Mihalic, K., et al. (2002). Interleukin (IL)-4 indirectly suppresses IL-2 production by human T lymphocytes via peroxisome proliferator-activated receptor gamma activated by macrophage-derived 12/15-lipoxygenase ligands. Journal of Biological Chemistry, 277(6), 3973–978.

    Article  PubMed  CAS  Google Scholar 

  144. Rioux, N., & Castonguay, A. (1998). Inhibitors of lipoxygenase: A new class of cancer chemopreventive agents. Carcinogenesis, 19(8), 1393–00.

    Article  PubMed  CAS  Google Scholar 

  145. Ye, Y. N., Wu, W. K., Shin, V. Y., Bruce, I. C., Wong, B. C., & Cho, C. H. (2005). Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis, 26(4), 827–34.

    Article  PubMed  CAS  Google Scholar 

  146. Hennig, R., Ding, X. Z., Tong, W. G., & Witt, R. C., Jovanovic, B. D., Adrian, T. E. (2004). Effect of LY293111 in combination with gemcitabine in colonic cancer. Cancer Letters, 210(1), 41–6.

    Article  PubMed  CAS  Google Scholar 

  147. Galfi, P., Neogrady, Z., Amberger, A., Margreiter, R., & Csordas, A. (2005). Sensitization of colon cancer cell lines to butyrate-mediated proliferation inhibition by combined application of indomethacin and nordihydroguaiaretic acid. Cancer Detection and Prevention, 29(3), 276–85.

    Article  PubMed  CAS  Google Scholar 

  148. Anderson, K. M., Seed, T., & Vos, M., et al. (1998). 5-Lipoxygenase inhibitors reduce PC-3 cell proliferation and initiate nonnecrotic cell death. Prostate, 37(3), 161–73.

    Article  PubMed  CAS  Google Scholar 

  149. Avis, I., Martinez, A., & Tauler, J., et al. (2005). Inhibitors of the arachidonic acid pathway and peroxisome proliferator-activated receptor ligands have superadditive effects on lung cancer growth inhibition. Cancer Research, 65(10), 4181–190.

    Article  PubMed  CAS  Google Scholar 

  150. Mayburd, A. L., Martlinez, A., & Sackett, D., et al. (2006). Ingenuity network-assisted transcription profiling: Identification of a new pharmacologic mechanism for MK886. Clinical Cancer Research, 12(6), 1820–827.

    Article  PubMed  CAS  Google Scholar 

  151. Hazai, E., Bikadi, Z., Zsila, F., & Lockwood, S. F. (2006). Molecular modeling of the non-covalent binding of the dietary tomato carotenoids lycopene and lycophyll, and selected oxidative metabolites with 5-lipoxygenase. Bioorganic and Medicinal Chemistry, 14(20), 6859–867.

    Article  PubMed  CAS  Google Scholar 

  152. Bednar, W., Holzmann, K., & Marian, B. (2007). Assessing 12(S)-lipoxygenase inhibitory activity using colorectal cancer cells overexpressing the enzyme. Food and Chemical Toxicology, 45(3), 508–14.

    Article  PubMed  CAS  Google Scholar 

  153. Tong, W. G., Ding, X. Z., Witt, R. C., & Adrian, T. E. (2002). Lipoxygenase inhibitors attenuate growth of human pancreatic cancer xenografts and induce apoptosis through the mitochondrial pathway. Molecular Cancer Therapeutics, 1(11), 929–35.

    PubMed  CAS  Google Scholar 

  154. Kuntz, S., Wenzel, U., & Daniel, H. (1999). Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. European Journal of Nutrition, 38(3), 133–42.

    Article  PubMed  CAS  Google Scholar 

  155. Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., & Seeram, N. P., Shishodia, S., Takada, Y. (2004). Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. AntiCancer Research, 24(5A), 2783–840.

    PubMed  CAS  Google Scholar 

  156. Ju, J., Liu, Y., Hong, J., Huang, M. T., Conney, A. H., & Yang, C. S. (2003). Effects of green tea and high-fat diet on arachidonic acid metabolism and aberrant crypt foci formation in an azoxymethane-induced colon carcinogenesis mouse model. Nutrition and Cancer, 46(2), 172–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham P. Pidgeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pidgeon, G.P., Lysaght, J., Krishnamoorthy, S. et al. Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev 26, 503–524 (2007). https://doi.org/10.1007/s10555-007-9098-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9098-3

Keywords

Navigation