Skip to main content
Log in

Consequences of the Evolution of the GABA A Receptor Gene Family

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. This paper reviews the evolution of the family of genes present in mammals and other vertebrates that encode γ-aminobutyric acid (GABA) type A (GABAA) receptors, which are the major inhibitory neurotransmitter receptors in the central nervous system (CNS). In mammals, 16 different polypeptides (α1–α6, β1–β3, γ1–γ3, δ, ε, π, and θ) have been identified, using recombinant DNA techniques, each of which is encoded by a distinct gene. The products of these genes assemble in diverse combinations to form a variety of receptor subtypes that have different sensitivities to a number of clinically relevant compounds, such as the benzodiazepines (BZs).

2. Based on a number of chromosomal mapping techniques, the majority of the GABAA receptor genes have been localized, in man, in four clusters on chromosomes 4, 5, 15, and the X. Furthermore, the genes that are present within these clusters have a conserved transcriptional orientation. It has, therefore, been proposed that the clusters arose largely as a consequence of two whole-genome doublings that occurred during chordate evolution, and that the ancestral cluster contained an “α-like,” a “β-like,” and a “γ-like” subunit gene.

3. Our laboratory has identified two additional GABAA receptor polypeptides (the β4 and γ4 subunits) in a number of vertebrate species; these do not appear to be present in mammals. We discuss here the relationship of the corresponding genes to other GABAA receptor genes, and conclude that their products are orthologous to the mammalian θ and ε subunits, respectively.

4. The GABAA receptor has a number of binding sites for compounds such as BZs, barbiturates, neurosteroids, and certain volatile anaesthetics. However, the only site at which endogenous compounds are thought to be active is the steroid site; this binds steroids such as certain metabolites of progesterone and deoxycorticosterone, which are synthesized in the periphery and CNS. Since the in vivo functional relevance, if any, of binding sites for other classes of compounds (such as the BZs) is unknown, the significance of differences in primary sequence, between different receptor subunits, is uncertain. We suggest that a possibly more important consequence of gene duplication is that it permitted greater flexibility in the level, pattern and regulation of expression of GABAA receptor genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amores, A., Force, A., Yan, Y. L., Joly, L., Amemiya, C., Fritz, A., Ho, R. K., Langeland, J., Prince, V., Wang, Y. L., Westerfield, M., Ekker, M., and Postlethwait, J. H. (1998). Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714.

    Article  PubMed  Google Scholar 

  • Aparicio, S., Hawker, K., Cottage, A., Mikawa, Y., Zuo, L., Venkatesh, B., Chen, E., Krumlauf, R., and Brenner, S. (1997). Organisation of the Fugu rubripes Hox clusters: Evidence for continuing evolution of vertebrate Hox complexes. Nature Genet. 16:79–83.

    Article  PubMed  Google Scholar 

  • Backus, K. H., Arigoni, M., Drescher, U., Scheurer, L., Malherbe, P., Möhler, H., and Benson, J. A. (1993). Stoichiometry of a recombinant GABAA receptor deduced from mutation-induced rectification. NeuroReport 5:285–288.

    PubMed  Google Scholar 

  • Bailey, M. E. S., Albrecht, B. E., Johnson, K. J., and Darlison, M. G. (1999a). Genetic linkage and radiation hybrid mapping of the three human GABAC receptor ρ subunit genes: GABRR1, GABRR2 and GABRR3. Biochim. Biophys. Acta 1447:307–312.

    Google Scholar 

  • Bailey, M. E. S., Matthews, D. A., Riley, B. P., Albrecht, B. E., Kostrzewa, M., Hicks, A. A., Harris, R., Müller, U., Darlison, M. G., and Johnson, K. J. (1999b). Genomic mapping of human GABAA receptor subunit gene clusters. Mamma. Genom. 10:839–843.

    Article  Google Scholar 

  • Bateson, A. N., Lasham, A., and Darlison, M. G. (1991a). γ-Aminobutyric acidA receptor heterogeneity is increased by alternative splicing of a novel β-subunit gene transcript. J. Neurochem. 56:1437–1440.

    Google Scholar 

  • Bateson, A. N., Harvey, R. J., Wisden, W., Glencorse, T. A., Hicks, A. A., Hunt, S. P., Barnard, E. A., and Darlison M. G. (1991b). The chicken GABAA receptor α1 subunit: cDNA sequence and localization of the corresponding mRNA. Mol. Brain Res. 9:333–339.

    Article  Google Scholar 

  • Baulac, S., Huberfeld, G., Gourfinkel-An, I., Mitropoulou, G., Beranger, A., Prud’homme, J. F., Baulac, M., Brice, A., Bruzzone, R., and LeGuern, E. (2001). First genetic evidence of GABAA receptor dysfunction in epilepsy: A mutation in the γ2-subunit gene. Nature Genet. 28:46–48.

    Article  PubMed  Google Scholar 

  • Baumann, S. W., Baur, R., and Sigel, E. (2001). Subunit arrangement of γ-aminobutyric acid type A receptors. J. Biol. Chem. 276:36275–36280.

    Article  PubMed  Google Scholar 

  • Baumann, S. W., Baur, R., and Sigel, E. (2002). Forced subunit assembly in α1β2γ2 GABAA receptors. Insight into the absolute arrangement. J. Biol. Chem. 277:46020–46025.

    Article  PubMed  Google Scholar 

  • Ben-Ari, Y. (2002). Excitatory actions of GABA during development: The nature of the nurture. Nature Rev. Neurosci. 3:728–739.

    Article  Google Scholar 

  • Boardman, P. E., Sanz-Ezquerro, J., Overton, I. M., Burt, D. W., Bosch, E., Fong, W. T., Tickle, C., Brown, W. R. A., Wilson, S. A., and Hubbard, S. J. (2002). A comprehensive collection of chicken cDNAs. Curr. Biol. 12:1965–1969.

    Article  PubMed  Google Scholar 

  • Bonnert, T. P., McKernan, R. M., Farrar, S., le Bourdelles, B., Heavens, R. P., Smith, D. W., Hewson, L., Rigby, M. R., Sirinathsinghji, D. J., Brown, N., Wafford, K. A., and Whiting, P. J. (1999). θ, a novel γ-aminobutyric acid type A receptor subunit. Proc. Natl. Acad. Sci. U.S.A. 96:9891–9896.

    Article  PubMed  Google Scholar 

  • Bormann, J. (2000). The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci. 21:6–19.

    Article  PubMed  Google Scholar 

  • Brickley, S. G., Revilla, V., Cull-Candy, S. G., Wisden, W., and Farrant, M. (2001). Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409:88–92.

    Article  PubMed  Google Scholar 

  • Brooks-Kayal, A. R., Shumate, M. D., Jin, H., Rikhter, T. Y., Kelly, M. E., and Coulter, D. A. (2001). γ-Aminobutyric acidA receptor subunit expression predicts functional changes in hippocampal dentate granule cells during postnatal development. J. Neurochem. 77:1266–1278.

    Article  PubMed  Google Scholar 

  • Buckle, V. J., Fujita, N., Ryder-Cook, A. S., Derry, J. M. J., Barnard, P. J., Lebo, R. V., Schofield, P. R., Seeburg, P. H., Bateson, A. N., Darlison, M. G., and Barnard, E. A. (1989). Chromosomal localization of GABAA receptor subunit genes: Relationship to human genetic disease. Neuron 3:647–654.

    Article  PubMed  Google Scholar 

  • Chang, Y., Wang, R., Barot, S., and Weiss, D. S. (1996). Stoichiometry of a recombinant GABAA receptor. J. Neurosci. 16:5415–5424.

    PubMed  Google Scholar 

  • Clements, M. P., and Bourne, R. C. (1996). Passive avoidance learning in the day-old chick is modulated by GABAergic agents. Pharmacol. Biochem. Behav. 53:629–634.

    Article  PubMed  Google Scholar 

  • Collinson, N., Kuenzi, F. M., Jarolimek, W., Maubach, K. A., Cothliff, R., Sur, C., Smith, A., Otu, F. M., Howell, O., Atack, J. R., McKernan, R. M., Seabrook, G. R., Dawson, G. R., Whiting, P. J., and Rosahl, T. W. (2002). Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAA receptor. J. Neurosci. 22:5572–5580.

    PubMed  Google Scholar 

  • Cossette, P., Liu, L., Brisebois, K., Dong, H., Lortie, A., Vanasse, M., Saint-Hilaire, J. M., Carmant, L., Verner, A., Lu, W. Y., Wang, Y. T., and Rouleau, G. A. (2002). Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nature Genet. 31:184–189.

    Article  PubMed  Google Scholar 

  • Cutting, G. R., Curristin, S., Zoghbi, H., O’Hara, B., Seldin, M. F., and Uhl, G. R. (1992). Identification of a putative γ-aminobutyric acid (GABA) receptor subunit rho2 cDNA and colocalization of the genes encoding rho2 (GABRR2) and rho1 (GABRR1) to human chromosome 6q14-q21 and mouse chromosome 4. Genomics 12:801–806.

    Article  PubMed  Google Scholar 

  • Darlison, M. G., and Albrecht, B. E. (1995). GABAA receptor subtypes: Which, where and why? Semin. Neurosci. 7:115–126.

    Article  Google Scholar 

  • Davies, M. (2003). The role of GABAA receptors in mediating the effects of alcohol in the central nervous system. J. Psychiat. Neurosci. 28:263–274.

    Google Scholar 

  • Davies, P. A., Hanna, M. C., Hales, T. G., and Kirkness, E. F. (1997). Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit. Nature 385:820–823.

    Article  PubMed  Google Scholar 

  • Davies, P. A., Wang, W., Hales, T. G., and Kirkness, E. F. (2003). A novel class of ligand-gated ion channel is activated by Zn2+. J. Biol. Chem. 278:712–717.

    Article  PubMed  Google Scholar 

  • DeLorey, T. M., Handforth, A., Anagnostaras, S. G., Homanics, G. E., Minassin, B. A., Asatourin, A., Fanselow, M. S., Delgado-Escueta, A., Ellison, G. D., and Olsen, R. W. (1998). Mice lacking the β3-subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioural characteristics of Angelman Syndrome. J. Neurosci. 18:8505–8514.

    PubMed  Google Scholar 

  • Drew, C. A., and Johnston, G. A. R. (1992). Bicuculline- and baclofen-insensitive γ-aminobutyric acid binding to rat cerebellar membranes. J. Neurochem. 58:1087–1092.

    PubMed  Google Scholar 

  • Drew, C. A., Johnston, G. A. R., and Weatherby, R. P. (1984). Bicuculline-insensitive GABA receptors: Studies on the binding of (-)-baclofen to rat cerebellar membranes. Neurosci. Lett. 52:317–321.

    Article  PubMed  Google Scholar 

  • Enz, R., Brandstätter, J. H., Hartveit, E., Wässle, H., and Bormann, J. (1995). Expression of GABA receptor ρ1 and ρ2 subunits in the retina and brain of the rat. Eur. J. Neurosci. 7:1495–1501.

    PubMed  Google Scholar 

  • Fritschy, J. M., Benke, D., Mertens, S., Oertel, W. H., Bachi, T., and Möhler, H. (1992). Five subtypes of type A γ-aminobutyric acid receptors identified in neurons by double and triple immunofluorescence staining with subunit-specific antibodies. Proc. Natl. Acad. Sci. U.S.A. 89:6726–6730.

    PubMed  Google Scholar 

  • Glatt, K., Sinnett, D., and Lalande, M. (1994). The human γ-aminobutyric acid receptor subunit β3 and α5 gene cluster in chromosome 15q11-q13 is rich in highly polymorphic (CA)n repeats. Genomics 19:157–160.

    Article  PubMed  Google Scholar 

  • Glatt, K., Glatt, H., and Lalande, M. (1997). Structure and organisation of GABRB3 and GABRA5. Genomics 41:63–69.

    Article  PubMed  Google Scholar 

  • Glencorse, T. A., Bateson, A. N., Hunt, S. P., and Darlison, M. G. (1991). Distribution of the GABAA receptor α1- and γ2-subunit mRNAs in chick brain. Neurosci. Lett. 133:45–48.

    Article  PubMed  Google Scholar 

  • Greer, J. M., Puetz, J., Thomas, K. R., and Capecchi, M. R. (2000). Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 403:661–665.

    Article  PubMed  Google Scholar 

  • Grenningloh, G., Schmieden, V., Schofield, P. R., Seeburg, P. H., Siddique, T., Mohandas, T. K., Becker, C. M., and Betz, H. (1990). Alpha subunit variants of the human glycine receptor: Primary structures, functional expression and chromosomal localization of the corresponding genes. EMBO J. 9:771–776.

    PubMed  Google Scholar 

  • Günther, U., Benson, J., Benke, D., Fritschy, J. M., Reyes, G., Knoflach, F., Crestani, F., Aguzzi, A., Arigoni, M., Lang, Y., Bluethmann, H., Möhler, H., and Lüscher, B. (1995). Benzodiazepine-insensitive mice generated by targeted disruption of the γ2 subunit gene of γ-aminobutyric acid type A receptors. Proc. Natl. Acad. Sci. U.S.A. 92:7749–7753.

    PubMed  Google Scholar 

  • Harkin, L. A., Bowser, D. N., Dibbens, L. M., Singh, R., Phillips, F., Wallace, R. H., Richards, M. C., Williams, D. A., Mulley, J. C., Berkovic, S. F., Scheffer, I. E., and Petrou, S. (2002). Truncation of the GABAA-receptor γ2 subunit in a family with generalized epilepsy with febrile seizures plus. Am. J. Hum. Genet. 70:530–536.

    Article  PubMed  Google Scholar 

  • Harvey, R. J., Kim, H.-C., and Darlison, M. G. (1993). Molecular cloning reveals the existence of a fourth γ subunit of the vertebrate brain GABAA receptor. FEBS Lett. 331:211–216.

    Article  PubMed  Google Scholar 

  • Harvey, R. J., McCabe, B. J., Solomonia, R. O., Horn, G., and Darlison, M. G. (1998). Expression of the GABAA receptor γ4-subunit gene: Anatomical distribution of the corresponding mRNA in the domestic chick forebrain and the effect of imprinting training. Eur. J. Neurosci. 10:3024–3028.

    Article  PubMed  Google Scholar 

  • Hedblom, E., and Kirkness, E. F. (1997). A novel class of GABAA receptor subunit in tissues of the reproductive system. J. Biol. Chem. 272:15346–15350.

    Article  PubMed  Google Scholar 

  • Hevers, W., and Lüddens, H. (1998). The diversity of GABAA receptors. Mol. Neurobiol. 18:35–86.

    PubMed  Google Scholar 

  • Holland, P. W., Garcia-Fernàndez, J., Williams, N. A., and Sidow, A. (1994). Gene duplications and the origins of vertebrate development. Dev. Suppl. 125–133.

  • Homanics, G. E., Delorey, T. M., Firestone, L. L., Quinlan, J. J., Handforth, A. J., Harrison, N. L., Krasowski, M. D., Rick, C. E. M., Korpi, E. R., Makelai, R., Brilliant, M. H., Hagiwara, N., Ferguson, C., Snyder, K., and Olsen, R. W. (1997). Mice devoid of γ-aminobutyrate type A receptor β3-subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc. Natl. Acad. Sci. U.S.A. 94:4143–4148.

    Article  PubMed  Google Scholar 

  • Homanics, G. E., Harrison, N. L., Quinlan, J. J., Krasowski, M. D., Rick, C. E., de Blas, A. L., Mehta, A. K., Kist, F., Mihalek, R. M., Aul, J. J., and Firestone, L. L. (1999). Normal electrophysiological and behavioral responses to ethanol in mice lacking the long splice variant of the γ2 subunit of the γ-aminobutyrate type A receptor. Neuropharmacology 38:253–265.

    Article  PubMed  Google Scholar 

  • Horenstein, J., Wagner, D. A., Czajkowski, C., and Akabas, M. H. (2001). Protein mobility and GABA-induced conformational changes in GABAA receptor pore-lining M2 segment. Nature Neurosci. 4:477–485.

    PubMed  Google Scholar 

  • Horn, G. (1998). Visual imprinting and the neural mechanisms of recognition memory. Trends Neurosci. 21:300–305.

    Article  PubMed  Google Scholar 

  • Hughes, A. L., da Silva, J., and Friedman, R. (2001). Ancient genome duplications did not structure the human Hox-bearing chromosomes. Genome Res. 11:771–780.

    Article  PubMed  Google Scholar 

  • Lambert, J. J., Belelli, D., Peden, D. R., Vardy, A. W., and Peters, J. A. (2003). Neurosteroid modulation of GABAA receptors. Prog. Neurobiol. 71:67–80.

    Article  PubMed  Google Scholar 

  • Jones, A., Korpi, E. R., McKernan, R. M., Pelz, R., Nusser, Z., Makela, R., Mellor, J. R., Pollard, S., Bahn, S., Stephenson, F. A., Randall, A. D., Sieghart, W., Somogyi, P., Smith, A. J., and Wisden, W. (1997). Ligand-gated ion channel subunit partnerships: GABAA receptor α6 subunit gene inactivation inhibits δ subunit expression. J. Neurosci. 17:1350–1362.

    PubMed  Google Scholar 

  • Jones, D. T., Taylor, W. R., and Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8:275–282.

    PubMed  Google Scholar 

  • Kirkness, E. F., Kusiak, J. W., Fleming, J. T., Menninger, J., Gocayne, J. D., Ward, D. C., and Venter, J. C. (1991). Isolation, characterization, and localization of human genomic DNA encoding the β1 subunit of the GABAA receptor (GABRB1). Genomics 10:985–995.

    Article  PubMed  Google Scholar 

  • Kmita, M., and Duboule, D. (2003). Organizing axes in time and space: 25 years of colinear tinkering. Science 301:331–333.

    Article  PubMed  Google Scholar 

  • Lasham, A., Vreugdenhil, E., Bateson, A. N., Barnard, E. A., and Darlison, M. G. (1991). Conserved organisation of the γ-aminobutyric acidA receptor genes: Cloning and analysis of the chicken β4-subunit gene. J. Neurochem. 57:352–355.

    PubMed  Google Scholar 

  • Laurie, D. J., Seeburg, P. H., and Wisden, W. (1992). The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J. Neurosci. 12:1063–1076.

    PubMed  Google Scholar 

  • Löw, K., Crestani, F., Keist, R., Benke, D., Bruenig, I., Benson, J. A., Fritschy, J. M., Rülicke, T., Bluethmann, H., Möhler, H., and Rudolph, U. (2000). Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134.

    Article  PubMed  Google Scholar 

  • Malherbe, P., Draguhn, A., Multhaup, G., Beyreuther, K., and Möhler, H. (1990). GABAA-receptor expressed from rat brain α- and β-subunit cDNAs displays potentiation by benzodiazepine receptor ligands. Mol. Brain Res. 8:199–208.

    Article  PubMed  Google Scholar 

  • Martinez, P., and Amemiya, C. T. (2002). Genomics of the HOX gene cluster. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 133:571–580.

    Article  PubMed  Google Scholar 

  • Matzenbach, B. Maulet, Y., Sefton, L., Courtier, B., Avner, P., Guenet, J. L., and Betz, H. (1994). Structural analysis of mouse glycine receptor α subunit genes. Identification and chromosomal localization of a novel variant. J. Biol. Chem. 269:2607–2612.

    PubMed  Google Scholar 

  • McCabe, B. J., Horn, G., and Bateson, P. P. G. (1981). Effects of restricted lesions of the chick forebrain on the acquisition of the filial preferences during imprinting. Brain Res. 205:29–37.

    Article  PubMed  Google Scholar 

  • McKernan, R. M., and Whiting, P. J. (1996). Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci. 19:139–143.

    Article  PubMed  Google Scholar 

  • Mehta, A. K., and Ticku, M. K. (1999). An update on GABAA receptors. Brain Res. Rev. 29:196–217.

    Article  PubMed  Google Scholar 

  • Meyer, A., and Schartl, M. (1999). Gene and genome duplications in vertebrates: The one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol. 11:699–704.

    Article  PubMed  Google Scholar 

  • Mighell, A. J., Smith, N. R., Robinson, P. A., and Markham, A. F. (2000). Vertebrate pseudogenes. FEBS Lett. 468:109–114.

    Article  PubMed  Google Scholar 

  • Moragues, N., Ciofi, P., Tramu, G., and Garret, M. (2002). Localisation of GABAA receptor ɛ-subunit in cholinergic and aminergic neurones and evidence for co-distribution with the θ-subunit in rat brain. Neuroscience 111:657–669.

    Article  PubMed  Google Scholar 

  • Moss, S. J., and Smart, T. G. (2001). Constructing inhibitory synapses. Nature Rev. Neurosci. 2:240–250.

    Article  Google Scholar 

  • Nayeem, N., Green, T. P., Martin, I. L., and Barnard, E. A. (1994). Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis. J. Neurochem. 62:815–818.

    PubMed  Google Scholar 

  • Ohno, S. (1970). Evolution of Gene Duplications, Springer Verlag, New York.

    Google Scholar 

  • Orchinik, M., Weiland, N. G., and McEwen, B. S. (1994). Adrenalectomy selectively regulates GABAA receptor subunit expression in the hippocampus. Mol. Cell. Neurosci. 5:451–458.

    Article  PubMed  Google Scholar 

  • Ortells, M. O., and Lunt, G. G. (1995). Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci. 18:121–127.

    Article  PubMed  Google Scholar 

  • Pendleton, J. W., Nagai, B. K., Murtha, M. T., and Ruddle, F. H. (1993). Expansion of the Hox gene family and the evolution of chordates. Proc. Natl. Acad. Sci. U.S.A. 90:6300–6304.

    PubMed  Google Scholar 

  • Pirker, S., Schwarzer, C., Wieselthaler, A., Sieghart, W., and Sperk, G. (2000). GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850.

    Article  PubMed  Google Scholar 

  • Poulsen, C. F., Christjansen, K. N., Hastrup, S., and Hartvig, L. (2000). Identification and cloning of a γ3 subunit splice variant of the human GABAA receptor. Mol. Brain Res. 78:201–203.

    Article  PubMed  Google Scholar 

  • Prince, V. E. (2002). The Hox Paradox: More complex(es) than imagined. Dev. Biol. 249:1–15.

    Article  PubMed  Google Scholar 

  • Pritchett, D. B., Sontheimer, H., Shivers, B. D., Ymer, S., Kettenmann, H., Schofield, P. R., and Seeburg, P. H. (1989). Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–585.

    Article  PubMed  Google Scholar 

  • Qian, H., Dowling, J. E., and Ripps, H. (1998). Molecular and pharmacological properties of GABA-ρ subunits from white perch retina. J. Neurobiol. 37:305–320.

    Article  PubMed  Google Scholar 

  • Rudolph, U., Crestani, F., and Möhler, H. (2001). GABAA receptor subtypes: Dissecting their pharmacological functions. Trends Pharmacol. Sci. 22:188–194.

    Article  PubMed  Google Scholar 

  • Russek, S. J. (1999). Evolution of GABAA receptor diversity in the human genome. Gene 227:213–222.

    Article  PubMed  Google Scholar 

  • Russek, S. J., and Farb, D. H. (1994). Mapping of the β2-subunit gene (GABRB2) to microdissected human chromosome 5q34-q35 defines a gene cluster for the most abundant GABAA receptor isoform. Genomics 23:528–533.

    Article  PubMed  Google Scholar 

  • Schmidt, H. A., Strimmer, K., Vingron, M., and von Haeseler, A. (2002). TREE-PUZZLE: Maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504.

    Article  PubMed  Google Scholar 

  • Schoch, P., Richards, J. G., Haring, P., Takacs, B., Stahli, C., Staehelin, T., Haefely, W., and Möhler, H. (1985). Co-localisation of GABAA receptors and benzodiazepine receptors in the brain shown by monoclonal antibodies. Nature 314:168–171.

    Article  PubMed  Google Scholar 

  • Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, A., Rodriguez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H., and Barnard, E. A. (1987). Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328:221–227.

    Article  PubMed  Google Scholar 

  • Sieghart, W. (1995). Structure and pharmacology of γ-aminobutyric acidA receptor subtypes. Pharmacol. Rev. 47:181–234.

    PubMed  Google Scholar 

  • Sieghart, W. (2000). Unraveling the function of GABAA receptor subtypes. Trends Pharmacol. Sci. 21:411–413.

    Article  PubMed  Google Scholar 

  • Sieghart, W., and Karobath, M. (1980). Molecular heterogeneity of benzodiazepine receptors. Nature 286:285–287.

    Article  PubMed  Google Scholar 

  • Sigel, E., and Barnard, E. A. (1984). A γ-aminobutyric acid/benzodiazepine receptor complex from bovine cerebral cortex. Improved purification with preservation of regulatory sites and their interactions. J. Biol. Chem. 259:7219–7223.

    PubMed  Google Scholar 

  • Sigel, E., Baur, R., and Malherbe, P. (1993). Recombinant GABAA receptor function and ethanol. FEBS Lett. 324:140–142.

    Article  PubMed  Google Scholar 

  • Sigel, E., Stephenson, F. A., Mamalaki, C., and Barnard, E. A. (1983). A γ-aminobutyric acid/benzodiazepine receptor complex of bovine cerebral cortex. Purification and partial characterization. J. Biol. Chem. 258:6965–6971.

    PubMed  Google Scholar 

  • Sinkkonen, S. T., Hanna, M. C., Kirkness, E. F., and Korpi, E. R. (2000). GABAA receptor ɛ and θ subunits display unusual structural variation between species and are enriched in the rat locus ceruleus. J. Neurosci. 20:3588–3595.

    PubMed  Google Scholar 

  • Skrabanek, L., and Wolfe, K. H. (1998). Eukaryote genome duplication—Where’s the evidence? Curr. Opin. Genet. Dev. 8:694–700.

    Article  PubMed  Google Scholar 

  • Sommer, B., Poustka, A., Spurr, N. K., and Seeburg, P. H. (1990). The murine GABAA receptor δ-subunit gene: Structure and assignment to human chromosome 1. DNA Cell Biol. 9:561–568.

    PubMed  Google Scholar 

  • Spagnuolo, A., Ristoratore, F., Di Gregorio, A., Aniello, F., Branno, M., and Di Lauro, R. (2003). Unusual number and genomic organisation of Hox genes in the tunicate Ciona intestinalis. Gene 309:71–79.

    Google Scholar 

  • Tehrani, M. H. J., Baumgartner, B. J., and Barnes Jr, E. M. (1995). The GABAA receptor β4-subunit is an embryonic isoform in the chick cerebral cortex. Soc. Neurosci. Abstr. 21:1842.

    Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The Clustal_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 25:4876–4882.

    Article  PubMed  Google Scholar 

  • Venault, P., Chapouthier, G., de Carvalho, L. P., Simiand, J., Morre, M., Dodd, R. H., and Rossier, J. (1986). Benzodiazepine impairs and β-carboline enhances performance in learning and memory tasks. Nature 321:864–866.

    Article  PubMed  Google Scholar 

  • Wafford, K. A., Burnett, D. M., Leidenheimer, N. J., Burt, D. R., Wang, J. B., Kofuji, P., Dunwiddie, T. V., Harris, R. A., and Sikela, J. M. (1991). Ethanol sensitivity of the GABAA receptor expressed in Xenopus oocytes requires 8 amino acids contained in the γ2L subunit. Neuron 7:27–33.

    Article  PubMed  Google Scholar 

  • Wallace, R. H., Marini, C., Petrou, S., Harkin, L. A., Bowser, D. N., Panchal, R. G., Williams, D. A., Sutherland, G. R., Mulley, J. C., Scheffer, I. E., and Berkovic, S. F. (2001). Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nature Genet. 28:49–52.

    Article  PubMed  Google Scholar 

  • Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T., and Hayasaki, H. (2002). GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol. 213:1–47.

    PubMed  Google Scholar 

  • Wegelius, K., Pasternack, M., Hiltunen, J. O., Rivera, C., Kaila, K., Saarma, M., and Reeben, M. (1998). Distribution of GABA receptor ρ subunit transcripts in the rat brain. Eur. J. Neurosci. 10:350–357.

    Article  PubMed  Google Scholar 

  • Whiting, P., McKernan, R. M., and Iverson, L. L. (1990). Another mechanism for creating diversity in γ-aminobutyrate type A receptors: RNA splicing directs expression of two forms of γ2-subunit, one of which contains a protein kinase C phosphorylation site. Proc. Natl. Acad. Sci. U.S.A. 87:9966–9970.

    PubMed  Google Scholar 

  • Whiting, P. J. (2003). GABA-A receptor subtypes in the brain: A paradigm for CNS drug discovery? Drug Discovery Today 8:445–450.

    Article  PubMed  Google Scholar 

  • Whiting, P. J., McAllister, G., Vassilatis, D., Bonnert, T. P., Heavens, R. P., Smith, D. W., Hewson, L., O’Donell, R., Rigby, M. R., Sirinathsinghji, D. J., Marshall, G., Thompson, S. A., and Wafford, K. A. (1997). Neuronally restricted RNA splicing regulates the expression of a novel GABAA receptor subunit conferring atypical functional properties. J. Neurosci. 17:5027–5037.

    PubMed  Google Scholar 

  • Wilcox, A. S., Warrington, J. A., Gardiner, K., Berger, R., Whiting, P., Altherr, M. R., Wasmuth, J. J., Patterson, D., and Sikela, J. M. (1992). Human chromosomal localization of genes encoding the γ1 and γ2 subunits of the γ-aminobutyric acid receptor indicates that members of this gene family are often clustered in the genome. Proc. Natl. Acad. Sci. U.S.A. 89:5857–5861.

    PubMed  Google Scholar 

  • Wilke, K., Gaul, R., Klauck, S. M., and Poustka, A. (1997). A gene in human chromosome band Xq28 (GABRE) defines a putative new subunit class of the GABAA neurotransmitter receptor. Genomics 45:1–10.

    Article  PubMed  Google Scholar 

  • Wisden, W., Laurie, D. J., Monyer, H., and Seeburg, P. H. (1992). The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J. Neurosci. 12:1040–1062.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark G. Darlison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darlison, M.G., Pahal, I. & Thode, C. Consequences of the Evolution of the GABA A Receptor Gene Family. Cell Mol Neurobiol 25, 607–624 (2005). https://doi.org/10.1007/s10571-005-4004-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-4004-4

Key Words

Navigation