Skip to main content

Advertisement

Log in

Neuronal Calcium Sensor-1 Regulation of Calcium Channels, Secretion, and Neuronal Outgrowth

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Calcium (Ca2+) is an important intracellular messenger underlying cell physiology. Ca2+ channels are the main entry route for Ca2+ into excitable cells, and regulate processes such as neurotransmitter release and neuronal outgrowth. Neuronal Calcium Sensor-1 (NCS-1) is a member of the Calmodulin superfamily of EF-hand Ca2+ sensing proteins residing in the subfamily of NCS proteins. NCS-1 was originally discovered in Drosophila as an overexpression mutant (Frequenin), having an increased frequency of Ca2+-evoked neurotransmission. NCS-1 is N-terminally myristoylated, can bind intracellular membranes, and has a Ca2+ affinity of 0.3 μM. Over 10 years ago it was discovered that NCS-1 overexpression enhances Ca2+-evoked secretion in bovine adrenal chromaffin cells. The mechanism was unclear, but there was no apparent direct effect on the exocytotic machinery. It was revealed, again in chromaffin cells, that NCS-1 regulates voltage-gated Ca2+ channels (Cavs) in G-Protein Coupled Receptor (GPCR) signaling pathways. This work in chromaffin cells highlighted NCS-1 as an important modulator of neurotransmission. NCS-1 has since been shown to regulate and/or directly interact with many proteins including Cavs (P/Q, N, and L), TRPC1/5 channels, GPCRs, IP3R, and PI4 kinase type IIIβ. NCS-1 also affects neuronal outgrowth having roles in learning and memory affecting both short- and long-term synaptic plasticity. It is not known if NCS-1 affects neurotransmission and synaptic plasticity via its effect on PIP2 levels, and/or via a direct interaction with Ca2+ channels or their signaling complexes. This review gives a historical account of NCS-1 function, examining contributions from chromaffin cells, PC12 cells and other models, to describe how NCS-1’s regulation of Ca2+ channels allows it to exert its physiological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aldea M, Jun K, Shin HS, Andres-Mateos E, Solis-Garrido LM, Montiel C, Garcia AG, Albillos A (2002) A perforated patch-clamp study of calcium currents and exocytosis in chromaffin cells of wild-type and α1A knockout mice. J Neurochem 81:911–921

    Article  CAS  PubMed  Google Scholar 

  • Angaut-Petit D, Toth P, Rogero O, Faille L, Tejedor FJ, Ferrus A (1998) Enhanced neurotransmitter release is associated with reduction of neuronal branching in a Drosophila mutant overexpressing Frequenin. Eur J Neurosci 10:423–434

    Article  CAS  PubMed  Google Scholar 

  • Beech DJ, Bernheim L (1992) Pertussis toxin and voltage dependence distinguish multiple pathways modulating calcium channels of rat sympathetic neurons. Neuron 8:97–106

    Article  CAS  PubMed  Google Scholar 

  • Beech DJ, Bernheim L, Mathie A, Hille B (1991) Intracellular Ca2+ buffers disrupt muscarinic receptor suppression of Ca2+ current and M current in rat sympathetic neurons. Proc Natl Acad Sci USA 88:652–656

    Article  CAS  PubMed  Google Scholar 

  • Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6(8):709–720

    Article  CAS  PubMed  Google Scholar 

  • Bolsover SR (2005) Calcium signalling in growth cone migration. Cell Calcium 37(5):395–402

    Article  CAS  PubMed  Google Scholar 

  • Bouron A, Becker C, Porzig H (1999) Functional expression of voltage-gated Na + and Ca2 + channels during neuronal differentiation of PC12 cells with nerve growth factor or forskolin. Naunyn Schmiedebergs Arch Pharmacol 359(5):370–377

    Article  CAS  PubMed  Google Scholar 

  • Burgoyne RD (1991) Control of exocytosis in adrenal chromaffin cells. Biochim Biophys Acta 1071:174–202

    CAS  PubMed  Google Scholar 

  • Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2 + signalling. Nat Rev Neurosci 8(3):182–193

    Article  CAS  PubMed  Google Scholar 

  • Burgoyne RD, Weiss JL (2001) The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 353:1–12

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Ann Rev Cell Dev Biol 16:521–555

    Article  CAS  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J, International Union of Pharmacology (2003) International Union of Pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol Rev 55(4):579–581

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhong ZG, Yokoyama S, Bark C, Meister B, Berggren PO, Roder J, Higashida H, Jeromin A (2001) Overexpression of rat neuronal calcium sensor-1 in rodent NG108–15 cells enhances synapse formation and transmission. J Physiol 532(3):649–659

    Article  CAS  PubMed  Google Scholar 

  • Dason JS, Romero-Pozuelo J, Marin L, Iyengar BG, Klose MK, Ferrús A, Atwood HL (2009) Frequenin/NCS-1 and the Ca2+-channel 1-subunit co-regulate synaptic transmission and nerve-terminal growth. J Cell Sci 122:4109–4121

    Article  CAS  PubMed  Google Scholar 

  • de Barry J, Janoshazi A, Dupont JL, Procksch O, Chasserot-Golaz S, Jeromin A, Vitale N (2006) Functional implication of neuronal calcium sensor-1 and PI4 kinase-β interaction in regulated exocytosis of PC12 cells. J Biol Chem 281:18098–18111

    Article  PubMed  Google Scholar 

  • Dolphin AC (2003a) G protein modulation of voltage-gated calcium channels. Pharmacol Rev 55(4):607–627

    Article  CAS  PubMed  Google Scholar 

  • Dolphin AC (2003b) Beta subunits of voltage-gated calcium channels. J Bioenerg Biomembr 35(6):599–620

    Article  CAS  PubMed  Google Scholar 

  • Dolphin AC (2009) Calcium channel diversity: multiple roles of calcium channel subunits. Curr Opin Neurobiol 19(3):237–244

    Article  CAS  PubMed  Google Scholar 

  • Fields R, Guthrie PB, Russell JT, Kater SB, Malhotra BS, Nelson PG (1993) Accommodation of mouse DRG growth cones to electrically induced collapse: kinetic analysis of calcium transients and set-point theory. J Neurobiol 24:1080–1098

    Article  CAS  PubMed  Google Scholar 

  • Fox AP, Cahill AL, Currie KPM, Grabner C, Harkins AB, Herring B, Hurley JH, Xie Z (2008) N- and P/Q-type Ca2+ channels in adrenal chromaffin cells. Acta Physiol 192(2):247–261

    Article  CAS  Google Scholar 

  • Gambino F, Pavlowsky A, Begle A, Dupont JL, Bahi N, Courjaret R, Gardette R, Hadjkacem H, Skala H, Poulain B, Chelly J, Vitale N, Humeau Y (2007) IL1-receptor accessory protein-like 1 (IL1RAPL1), a protein involved in cognitive functions, regulates N-type Ca2+-channel and neurite elongation. PNAS 104(21):9063–9068

    Article  CAS  PubMed  Google Scholar 

  • Gamper NRV, Yamada Y, Yang J, Shapiro MS (2004) Phosphotidylinositol 4, 5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels. J Neurosci 24(48):10980–10992

    Article  CAS  PubMed  Google Scholar 

  • Garcia AG, García-De-Diego AM, Gandía L, Borges R, García-Sancho J (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86(4):1093–1131

    Article  CAS  PubMed  Google Scholar 

  • Gomez M, De Castro E, Guarin E, Sasakura H, Kuhara A, Mori I, Bartfai T, Bargmann CI, Nef P (2001) Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning, memory in C. elegans. Neuron 30(1):241–248

    Article  CAS  PubMed  Google Scholar 

  • Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6(8):837–845

    Article  CAS  PubMed  Google Scholar 

  • Handley MTW, Lian LY, Haynes LP, Burgoyne RD (2010) Structural and Functional Deficits in a Neuronal Calcium Sensor-1 Mutant Identified in a Case of Autistic Spectrum Disorder. PLoS One 5(5):e10534

    Article  PubMed  Google Scholar 

  • Hay JC, Fisette PL, Jenkins GH, Anderson RA, Fukami K, Takenawa T, Martin TFJ (1995) ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 374:173–177

    Article  CAS  PubMed  Google Scholar 

  • Haynes LP, Thomas GM, Burgoyne RD (2005) Interaction of neuronal calcium sensor-1 and ADP-ribosylation factor 1 allows bidirectional control of phosphatidylinositol 4-kinase beta and trans-Golgi network-plasma membrane traffic. J Biol Chem 280(7):6047–6054

    Article  CAS  PubMed  Google Scholar 

  • Hendricks KB, Wang BQ, Schnieders EA, Thorner J (1999) Yeast homologue of neuronal Frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol 1(4):234–241

    Article  CAS  PubMed  Google Scholar 

  • Henley J, Poo M-m (2004) Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol 14(6):320–330

    Article  CAS  PubMed  Google Scholar 

  • Higuchi M, Onishi K, Masuyama M, Gotoh Y (2003) The phosphatidylinositol-3 kinase (PI3K)-Akt pathway suppresses neurite branch formation in NGF-treated PC12 cells. Genes Cells 8(8):657–669

    Article  CAS  PubMed  Google Scholar 

  • Hilfiker S (2003) Neuronal calcium sensor-1: a multifunctional regulator of secretion. Biochem Soc Trans 31(Pt 4):828–832

    CAS  PubMed  Google Scholar 

  • Hong K, Nishiyama M, Henley J, Tessier-Lavigne M, Poo M (2000) Calcium signalling in the guidance of nerve growth by netrin-1. Nature 403(6765):93–98

    Article  CAS  PubMed  Google Scholar 

  • Hui K, Feng ZP (2008) NCS-1 differentially regulates growth cone and somata calcium channels in Lymnaea neurons. Eur J Neurosci 27(3):631–643

    Article  PubMed  Google Scholar 

  • Hui H, McHugh D, Hannan M, Zeng F, Xu SZ, Khan SU, Levenson R, Beech DJ, Weiss JL (2006) Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J Physiol 572(Pt 1):165–172

    CAS  PubMed  Google Scholar 

  • Hui K, Fei GH, Saab BJ, Su J, Roder JC, Feng ZP (2007) Neuronal calcium sensor-1 modulation of optimal calcium level for neurite outgrowth. Development 134(24):4479–4489

    Article  CAS  PubMed  Google Scholar 

  • Iketani M, Imaizumi C, Nakamura F, Jeromin A, Mikoshiba K, Goshima Y, Takei K (2009) Regulation of neurite outgrowth mediated by neuronal calcium sensor-1 and inositol 1,4,5-trisphosphate receptor in nerve growth cones. Neuroscience 161(3):743–752

    Article  CAS  PubMed  Google Scholar 

  • James DJ, Khodthong C, Kowalchyk JA, Martin TF (2008) Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. J Cell Biol 182:355–366

    Article  CAS  PubMed  Google Scholar 

  • Jo J, Heon S, Kim MJ, Son GH, Park Y, Henley JM, Weiss JL, Sheng M, Collingridge GL, Cho K (2008) Metabotropic glutamate receptor-mediated LTD involves two interacting Ca2+ sensors, NCS-1 and PICK1. Neuron 60(6):1095–1111

    Article  CAS  PubMed  Google Scholar 

  • Kabbani N, Negyessy L, Lin R, Goldman-Rakic P, Levenson R (2002) Interaction with Neuronal Calcium Sensor NCS-1 mediates desensitization of the D2 Dopamine Receptor. J Neurosci 22:8476–8486

    CAS  PubMed  Google Scholar 

  • Koizumi S, Rosa P, Willars GB, Challiss RAJ, Taverna E, Francolini M, Bootman MD, Lipp P, Inoue K, Roder J, Jeromin A (2002) Mechanisms underlying the neuronal calcium sensor-1 evoked enhancement of exocytosis in PC12 cells. J Biol Chem 277:30315–30324

    Article  CAS  PubMed  Google Scholar 

  • Konur S, Ghosh A (2005) Calcium signaling and the control of dendritic development. Neuron 46(3):401–405

    Article  CAS  PubMed  Google Scholar 

  • Levitan IB (1999) It is calmodulin after all! Mediator of the calcium modulation of multiple ion channels. Neuron 22(4):645–648

    Article  CAS  PubMed  Google Scholar 

  • Martin TFJ (2005) PI(4, 5)Pregulation of surface membrane traffic. Curr Opin Cell Biol 13:493–499

    Article  Google Scholar 

  • Martin TFJ, Loyet KM, Barry VA, Kowalchyk JA (1997) The role of PtdIns(4, 5)P2 in exocytotic membrane fusion. Biochem Soc Trans 25:1137–1141

    CAS  PubMed  Google Scholar 

  • McFerran BW, Graham ME, Burgoyne RD (1998) Neuronal Ca2+ sensor 1, the mammalian homologue of Frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem 273(35):22768–22772

    Article  CAS  PubMed  Google Scholar 

  • McFerran BW, Weiss JL, Burgoyne RD (1999) Neuronal Ca2+ sensor 1. Characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca2+-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca2+ signal transduction. J Biol Chem 274(42):30258–30265

    Article  CAS  PubMed  Google Scholar 

  • Michailidis IE, Zhang Y, Yang J (2007) The lipid connection-regulation of voltage-gated Ca(2+) channels by phosphoinositides. Pflugers Arch 455(1):147–155

    Article  CAS  PubMed  Google Scholar 

  • Milosevic I, Sørensen JB, Lang T, Krauss M, Nagy G, Haucke V, Jahn R, Neher E (2005) Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J Neurosci 25:2557–2565

    Article  CAS  PubMed  Google Scholar 

  • Moorman SJ, Hume RI (1993) Omega-conotoxin prevents myelin-evoked growth cone collapse in neonatal rat locus coeruleus neurons in vitro. J Neurosci 13:4727–4736

    CAS  PubMed  Google Scholar 

  • Morgan A, Burgoyne RD (1997) Common mechanisms for regulated exocytosis in the chromaffin cell and the synapse. Semin Cell Dev Biol 8:141–149

    Article  CAS  PubMed  Google Scholar 

  • Nakamura TY, Jeromin A, Smith G, Kurushima H, Koga H, Nakabeppu Y, Wakabayashi S, Nabekura J (2006) Novel role of neuronal Ca2+ sensor-1 as a survival factor up-regulated in injured neurons. J Cell Biol 172(7):1081–1091

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan DW, Ivings L, Weiss JL, Ashby MC, Tepikin AV, Burgoyne RD (2002) Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction. J Biol Chem 277(16):14227–14237

    Article  PubMed  Google Scholar 

  • Pan CY, Jeromin A, Lundstrom K, Yoo SH, Roder J, Fox AP (2002) Alterations in exocytosis induced by neuronal Ca2+ sensor-1 in bovine chromaffin cells. J Neurosci 22(7):2427–2433

    CAS  PubMed  Google Scholar 

  • Petersen OH, Cancela JM (2000) Nerve guidance: attraction or repulsion by local Ca2+ signals. Curr Biol 10(8):R311–R314

    Article  CAS  PubMed  Google Scholar 

  • Pongs O, Lindemeier J, Zhu XR, Theil T, Engelkamp D, Krah-Jentgens I, Lambrecht HG, Koch KW, Schwemer J, Rivosecchi R, Mallart A, Galcerane J, Canale I, Barbase JA, Ferrús A (1993) Frequenin—a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11(1):15–28

    Article  CAS  PubMed  Google Scholar 

  • Rohacs T (2007) Regulation of TRP channels by PIP2. Pflugers Arch 453(6):753–762

    Article  CAS  PubMed  Google Scholar 

  • Rousset MCT, Gavarini S, Jeromin A, Charnet P (2003) Down-regulation of voltage-gated Ca2+ channels by neuronal calcium sensor-1 is beta subunit-specific. J Biol Chem 278(9):7019–7026

    Article  CAS  PubMed  Google Scholar 

  • Saab B, Georgiou J, Nath A, Lee FJ, Wang M, Michalon A, Liu F, Mansuy IM, Roder JC (2009) NCS-1 in the dentate gyrus promotes exploration, synaptic plasticity, and rapid acquisition of spatial memory. Neuron 63(5):643–656

    Article  CAS  PubMed  Google Scholar 

  • Schlecker C, Boehmerle W, Jeromin A, DeGray B, Varshney A, Sharma Y, Szigeti-Buck K, Ehrlich BE (2006) Neuronal Calcium Sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium. J Clin Invest 116(6):1668–1674

    Article  CAS  PubMed  Google Scholar 

  • Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–195

    Article  CAS  PubMed  Google Scholar 

  • Suh BC, Leal K, Hille B (2010) Modulation of high-voltage activated Ca2+ channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron 67:224–238

    Article  CAS  PubMed  Google Scholar 

  • Trebak M, Lemonnier L, DeHaven WI, Wedel BJ, Bird GS, Putney JW Jr (2009) Complex functions of phosphatidylinositol 4, 5-bisphosphate in regulation of TRPC5 cation channels. Pflugers Arch 457(4):757–769

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto T, Jeromin A, Saitoh N, Roder JC, Takahashi T (2002) Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium channel currents at presynaptic nerve terminals. Science 295:2276–2279

    Article  CAS  PubMed  Google Scholar 

  • Viard P, Butcher AJ, Halet G, Davies A, Nurnberg B, Heblich F, Dolphin AC (2004) PI3 K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat Neurosci 7(9):934–946

    Article  Google Scholar 

  • Wang C-Y, Yang F et al (2001) Ca2+ binding protein Frequenin mediates GDNF-induced potentiation of Ca2+ channels and transmitter release. Neuron 32:99–112

    Article  PubMed  Google Scholar 

  • Weiss JL, Burgoyne RD (2001) Voltage-independent inhibition of P/Q-type Ca2+ channels in adrenal chromaffin cells via a neuronal Ca2+ sensor-1-dependent pathway involves Src-family tyrosine kinase. J Biol Chem 276:44804–44811

    Article  CAS  PubMed  Google Scholar 

  • Weiss JL, Burgoyne RD (2002) Sense and sensibility in the regulation of voltage-gated Ca2+ channels. Trends Neurosci 25(10):489–491

    Article  CAS  PubMed  Google Scholar 

  • Weiss JL, Archer DA, Burgoyne RD (2000) Neuronal Ca2+ sensor-1/Frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J Biol Chem 275(51):40082–40087

    Article  CAS  PubMed  Google Scholar 

  • Williams EJ, Doherty P, Turner G, Reid RA, Hemperly JJ, Walsh FS (1992) Calcium influx into neurons can solely account for cell contact-dependent neurite outgrowth stimulated by transfected L1. J Cell Biol 119:883–892

    Article  CAS  PubMed  Google Scholar 

  • Winks JS, Hughes S, Filippov AK, Tatulian L, Abogadie FC, Brown DA, Marsh SJ (2005) Relationship between membrane phosphatidylinositol-4, 5-bisphosphate and receptor-mediated inhibition of native neuronal M channels. J Neurosci 25(13):3400–3413

    Article  CAS  PubMed  Google Scholar 

  • Wykes RC, Bauer CS, Khan SU, Weiss JL, Seward EP (2007) Differential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells. J Neurosci 27(19):5236–5248

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Kwan HY, Huang Y (2005) Regulation of TRP channels by phosphorylation. Neurosignals 14(6):273–280

    Article  CAS  PubMed  Google Scholar 

  • Yip PK, Wong LF, Sears TA, Yanez-Munoz RJ, McMahon SB (2010) Cortical overexpression of Neuronal Calcium Sensor-1 induces functional plasticity in spinal cord following unilateral pyramidal tract injury in rat. PLoS Biol 8(6):1–22

    Article  Google Scholar 

  • Zaika O, Tolstykh GP et al (2007) Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. J Neurosci 27(33):8914–8926

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie L. Weiss.

Additional information

A commentary to this article can be found at doi:10.1007/s10571-010-9611-z.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10571_2010_9588_MOESM1_ESM.tiff

(a) Endogenous NCS-1 Staining in K+ Differentiated Chromaffin Cells. Left panel transmitted light image of living differentiated bovine adrenal chromaffin cells by K+ (55 mM) depolarization for 48 h in the presence of FBS. Bovine chromaffin cells were electroporated with DN TRPC5 plasmid and incubated for 48 h. 55 mM K+ was added into the growth media to differentiate them for 48 h prior to co-immunostaining. Cells were co-stained with anti-DBH (Dopamine β-Hydroxlase) to label chromaffin cell exocytotic vesicles (TRITC, A), anti-NCS-1 (FITC, B) and phalloidin (Alexa Flour® 350, C). D is the merged image of A, B and C, in which both NCS-1 and DBH are enriched in the cell body and the growth cone areas. E, F and G are enlarged image of growth cones from the merged areas in boxes from picture D. Arrows point to the neurite filopodia tips, which are stained with phalloidin labeling the polymerized actin. Note NCS-1 staining is not present in the filopodia tips. (b) DN NCS-1 in NGF Differentiated Double Mutant Expressing Chromaffin Cells. Left panel living differentiated bovine adrenal chromaffin cells differentiated by NGF (100 ng/ml) for 10 days in the absence of FBS. Bovine adrenal chromaffin cells were electroporated with DN NCS-1 and DN TRPC5 plasmids and incubated for 48 h. 100 ng/ml NGF was used in a FBS free growth media to differentiate them for 10 days prior to co-immunostaining. Cells were co-stained with anti-DBH (TRITC, A), anti-NCS-1 (FITC, B) and phalloidin (C). D is the merged image of A, B and C, in which both NCS-1 and DBH are enriched in the cell body and the growth cone areas. E, F and G are enlarged images of growth cones from the merged areas in boxes from picture D. Arrows point to filopodia tips to show lack of phalloidin staining (compare to (a)) and enrichment in NCS-1 and DBH staining overlay. H. Hui and J.L. Weiss, data in preparation. (TIFF 2380 kb)

10571_2010_9588_MOESM2_ESM.tiff

(a) Quantification of NCS-1 Enrichment in Tips of Differentiated PC12 Cell Filopodia in DN/DN TRPC5/NCS-1 combination. PC12 cells transfected with cDNA constructs as indicated and fluorescence intensity of NCS-1 and tubulin staining was measured from digital photos using ImageJ software. Mean ± SEM **p < 0.001 shows significant differences via a students t-test of increased ratio value compared to the other cell groups (n = 25 cells/condition). H. Hui and J.L. Weiss, data in preparation. (b) Differential effects of NCS-1 over-expression on reporter growth hormone (GH) release from PC12. Cells were transfected with control or NCS-1 plasmid along with a GH encoding plasmid. After 3 days the cells were washed and challenged with (A) 300 mM ATP or (B) 55 mM KCl. Other cells (C) were permeabilized for 6 min by incubation in 20 mM digitonin and then challenged without (basal) or with 10 mM free Ca2+. After incubation for 15 min cellular GH and GH present in the medium were assayed and released GH expressed as a percentage of total GH. The extent of release was then normalized to the mean value of release for control stimulated cells. The data are shown as mean + SEM (n = 6). M.E. Graham and R.D. Burgoyne, data in preparation. (TIFF 2380 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, J.L., Hui, H. & Burgoyne, R.D. Neuronal Calcium Sensor-1 Regulation of Calcium Channels, Secretion, and Neuronal Outgrowth. Cell Mol Neurobiol 30, 1283–1292 (2010). https://doi.org/10.1007/s10571-010-9588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9588-7

Keywords

Navigation