Skip to main content
Log in

Inflammatory cytokines decrease the expression of nicotinic acetylcholine receptor during the cell maturation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

It is known that the nervous system significantly attenuates systemic inflammatory responses through the parasympathetic nervous system. Furthermore, it has been reported that the alpha7 subunit of a nicotinic acetylcholine receptor is required for a cholinergic inhibition against cytokine synthesis in a macrophage. As antigen-presenting cells (APCs) play a central role in the generation of primary T cell responses and the maintenance of immunity, in this study, we investigated the expression level of nicotinic receptors of a p53-deficient APC cell line (JawsII) derived from a mouse bone marrow. We showed that stimulation of the JawsII cells with lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNF-α) led increase of CD80 and CD86 expression while diminishment of the surface nicotinic receptor. On the other hand, stimulation of nicotinic receptor had no effect on these phenomena. Furthermore, we examined the ability of the cells to release cytokine when stimulated with both nicotine and LPS and showed that the stimulation with LPS augmented the secretion of IL-1a, IL-1b, IL-6, and TNF-α. These results suggested that nicotinic stimulation had no effect on the diminishment of alpha7 nicotinic acetylcholine receptor on JawsII cells by LPS stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gallowitsch-Puerta M, Tracey KJ (2005) Immunologic role of the cholinergic anti-inflammatory pathway and the nicotinic acetylcholine alpha 7 receptor. Ann N Y Acad Sci 1062:209–219

    Article  PubMed  Google Scholar 

  2. Czura CJ, Tracey KJ (2005) Autonomic neural regulation of immunity. J Intern Med 257:156–166

    Article  CAS  PubMed  Google Scholar 

  3. Pavlov VA, Tracey KJ (2006) Controlling inflammation: the cholinergic anti-inflammatory pathway. Biochem Soc Trans 34:1037–1040

    Article  CAS  PubMed  Google Scholar 

  4. Gallowitsch-Puerta M, Pavlov VA (2007) Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sci 80:2325–2329

    Article  CAS  PubMed  Google Scholar 

  5. Wang H et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388

    Article  CAS  PubMed  Google Scholar 

  6. Wang H et al (2004) Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 10:1216–1221

    Article  CAS  PubMed  Google Scholar 

  7. Kelso ML, Wehner JM, Collins AC, Scheff SW, Pauly JR (2006) The pathophysiology of traumatic brain injury in alpha7 nicotinic cholinergic receptor knockout mice. Brain Res 1083:204–210

    Article  CAS  PubMed  Google Scholar 

  8. Hamano R, Takahashi HK, Iwagaki H, Yoshino T, Nishibori M, Tanaka N (2006) Stimulation of alpha7 nicotinic acetylcholine receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes. Shock 26:358–364

    Article  CAS  PubMed  Google Scholar 

  9. Kim PK, Deutschman CS (2000) Inflammatory responses and mediators. Surg Clin North Am 80:885–894

    Article  CAS  PubMed  Google Scholar 

  10. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    Article  CAS  PubMed  Google Scholar 

  11. Guo RF, Ward PA (2002) Mediators and regulation of neutrophil accumulation in inflammatory responses in lung: insights from the IgG immune complex model. Free Radic Biol Med 33:303–310

    Article  PubMed  Google Scholar 

  12. van Westerloo DJ, Giebelen IA, Florquin S, Bruno MJ, Larosa GJ, Ulloa L, Tracey KJ, van der Poll T (2006) The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 130:1822–1830

    Article  PubMed  Google Scholar 

  13. Yoshikawa H, Kurokawa M, Ozaki N, Nara K, Atou K, Takada E, Kamochi H, Suzuki N (2006) Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic acetylcholine receptor alpha7. Clin Exp Immunol 146:116–123

    Article  CAS  PubMed  Google Scholar 

  14. Van Der Zanden EP, Boeckxstaens GE, de Jonge WJ (2009) The vagus nerve as a modulator of intestinal inflammation. Neurogastroenterol Motil 21:6–17

    Article  Google Scholar 

  15. Parrish WR et al (2008) Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol Med 14:567–574

    Article  CAS  PubMed  Google Scholar 

  16. Nizri E, Hamra-Amitay Y, Sicsic C, Lavon I, Brenner T (2006) Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology 50:540–547

    Article  CAS  PubMed  Google Scholar 

  17. Randolph GJ, Jakubzick C, Qu C (2008) Antigen presentation by monocytes and monocyte-derived cells. Curr Opin Immunol 20:52–60

    CAS  PubMed  Google Scholar 

  18. Aicher A, Heeschen C, Mohaupt M, Cooke JP, Zeiher AM, Dimmeler S (2003) Nicotine strongly activates dendritic cell-mediated adaptive immunity: potential role for progression of atherosclerotic lesions. Circulation 107:604–611

    Article  CAS  PubMed  Google Scholar 

  19. Bobryshev YV (2005) Dendritic cells in atherosclerosis: current status of the problem and clinical relevance. Eur Heart J 26:1700–1704

    Article  PubMed  Google Scholar 

  20. Jorgensen TN, Haase C, Michelsen BK (2002) Treatment of an immortalized APC cell line with both cytokines and LPS ensures effective T-cell activation in vitro. Scand J Immunol 56:492–503

    Article  CAS  PubMed  Google Scholar 

  21. Ulloa L (2005) The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov 4:673–684

    Article  CAS  PubMed  Google Scholar 

  22. Borovikova LV et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    Article  CAS  PubMed  Google Scholar 

  23. Kawashima K, Yoshikawa K, Fujii YX, Moriwaki Y, Misawa H (2007) Expression and function of genes encoding cholinergic components in murine immune cells. Life Sci 80:2314–2319

    Article  CAS  PubMed  Google Scholar 

  24. Saeed RW et al (2005) Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med 201:1113–1123

    Article  CAS  PubMed  Google Scholar 

  25. Grando SA, Kawashima K, Wessler I (2003) Introduction: the non-neuronal cholinergic system in humans. Life Sci 72:2009–2012

    Article  CAS  PubMed  Google Scholar 

  26. Lopez-Bravo M, Ardavin C (2008) In vivo induction of immune responses to pathogens by conventional dendritic cells. Immunity 29:343–351

    Article  CAS  PubMed  Google Scholar 

  27. de Jonge WJ et al (2005) Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 6:844–851

    Article  PubMed  Google Scholar 

  28. Malemud CJ, Miller AH (2008) Pro-inflammatory cytokine-induced SAPK/MAPK and JAK/STAT in rheumatoid arthritis and the new anti-depression drugs. Expert Opin Ther Targets 12:171–183

    Article  CAS  PubMed  Google Scholar 

  29. Sun X, Ritzenthaler JD, Zheng Y, Roman J, Han S (2009) Rosiglitazone inhibits alpha4 nicotinic acetylcholine receptor expression in human lung carcinoma cells through peroxisome proliferator-activated receptor gamma-independent signals. Mol Cancer Ther 8:110–118

    Article  CAS  PubMed  Google Scholar 

  30. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Taira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 95 kb)

(PDF 3654 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, Y., Tachikawa, E., Ohtake, S. et al. Inflammatory cytokines decrease the expression of nicotinic acetylcholine receptor during the cell maturation. Mol Cell Biochem 333, 57–64 (2010). https://doi.org/10.1007/s11010-009-0204-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0204-4

Keywords

Navigation