Skip to main content
Log in

Structural and functional alterations in the hippocampus due to hypothyroidism

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Thyroid hormones (THs) exert a broad spectrum of effects on the central nervous system (CNS). Hypothyroidism, especially during CNS development, can lead to structural and functional changes (mostly resulting in mental retardation). The hippocampus is considered as one of the most important CNS structures, while the investigation and understanding of its direct and indirect interactions with the THs could provide crucial information on the neurobiological basis of the (frequently-faced in clinical practice) hypothyroidism-induced mental retardation and neurobehavioral dysfunction. THs-deficiency during the fetal and/or the neonatal period produces deleterious effects for neural growth and development (such as reduced synaptic connectivity, delayed myelination, disturbed neuronal migration, deranged axonal projections, decreased synaptogenesis and alterations in neurotransmitters’ levels). On the other hand, the adult-onset thyroid dysfunction is usually associated with neurological and behavioural abnormalities. In both cases, genomic and proteomic changes seem to occur. The aim of this review is to provide an up-to-date synopsis of the available knowledge regarding the aforementioned alterations that take place in the hippocampus due to fetal-, neonatal- or adult-onset hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

THs:

thyroid hormones

CNS:

central nervous system

T4 :

thyroxine

T3 :

3,5,3'-triiodothyronine

TH:

thyroid hormone

TRs:

TH receptors

TUNEL:

terminal deoxynucleotidyl transferase dUTP nick end labeling

NMDA:

N-methyl-D-aspartic acid

SVZ:

subventricular zone

SGZ:

subgranular zone

Dab1:

Disabled-1 (gene)

NCAM:

neural cell adhesion molecule

NGF:

nerve growth factor

NT-3:

neurotrophin-3

BrdU:

bromodeoxyuridine

RC3:

neurogranin

Ca2+ :

calcium ion

LTP:

long-term potentiation

NGFI-A:

nerve growth factor-induced gene A

IEGs:

immediate early genes

IOD:

integrated optical density

GAP-43:

growth associated protein of 43 kDa

Sema3F:

semaphorin-3F

CRMP:

collapsin response mediated protein

CAM:

cell adhesion molecule

M1:

muscarinic receptor 1

MAPK:

mitogen-activated protein kinase

PTU:

propylthiouracil

ChAT:

choline acetyltransferase

PCB:

polychlorinated biphenyl

AChE:

acetylcholinesterase

Na+,K+-ATPase:

sodium/potassium adenosine-triphosphatase

ACh:

acetylcholine

ATP:

adenosine triphosphate

A1:

adenosine receptor 1

NTPDase3:

ecto-nucleoside triphosphate diphosphohydrolase 3

AMP:

adenosine monophosphate

ADP:

adenosine diphosphate

PGD2 :

prostaglandin D2

PGH2 :

prostaglandin H2

EPSP:

excitatory postsynaptic potential

GABA:

gamma-aminobutyric acid

ERKs:

extracellular signal-regulated kinases

JNKs:

c-Jun N-terminal kinases

p38MAPKs:

p38 mitogen-activated protein kinases

PV:

parvalbumin

PV-IR:

PV-immunoreactivity

Cl- :

chlorine ion

References

  • Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126:337–389

    PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1990a) Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol 301:365–381

    PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1990b) Prolonged sojourn of developing pyramidal cells in the intermediate zone of the hippocampus and their settling in the stratum pyramidale. J Comp Neurol 301:343–364

    PubMed  CAS  Google Scholar 

  • Alvarez-Dolado M, Iglesias T, Rodríguez-Peña A, Bernal J, Muñoz A (1994) Expression of neurotrophins and the trk family of neurotrophin receptors in normal and hypothyroid rat brain. Brain Res Mol Brain Res 27:249–257

    PubMed  CAS  Google Scholar 

  • Alvarez-Dolado M, González-Sancho JM, Bernal J, Muñoz A (1998) Developmental expression of the tenascin-C is altered by hypothyroidism in the rat brain. Neuroscience 84:309–322

    PubMed  CAS  Google Scholar 

  • Alvarez-Dolado M, Ruiz M, Del Río JA, Alcántara S, Burgaya F, Sheldon M, Nakajima K, Bernal J, Howell BW, Curran T, Soriano E, Muñoz A (1999) Thyroid hormone regulates reelin and dab1 expression during brain development. J Neurosci 19:6979–6993

    PubMed  CAS  Google Scholar 

  • Alvarez-Dolado M, Figueroa A, Kozlov S, Sonderegger P, Furley AJ, Muñoz A (2001) Thyroid hormone regulates TAG-1 expression in the developing rat brain. Eur J Neurosci 14:1209–1218

    PubMed  CAS  Google Scholar 

  • Alva-Sánchez C, Ortiz-Butrón R, Cuéllar-García M, Hernández-García A, Pacheco-Rosado J (2002) Anatomical changes in CA3 hippocampal region by hypothyroidism in rats. Proc West Pharmacol Soc 45:125–126

    PubMed  Google Scholar 

  • Alva-Sánchez C, Medina-Canales MG, Ramos-Godínez MP, Sánchez-Espíndola ME, Becerril-Montes A (2007) Ultrastructural morphology of hypothyroid hippocampal pyramidal cells reveals apoptotic neuronal death. Acta Microscopica 16:325–326

    Google Scholar 

  • Alva-Sánchez C, Becerril A, Anguiano B, Aceves C, Pacheco-Rosado J (2009) Participation of NMDA-glutamatergic receptors in hippocampal neuronal damage caused by adult-onset hypothyroidism. Neurosci Lett 453:178–181

    PubMed  Google Scholar 

  • Alzoubi KH, Gerges NZ, Alkadhi KA (2005) Levothyroxin restores hypothyroidism-induced impairment of LTP of hippocampal CA1: electrophysiological and molecular studies. Exp Neurol 195:330–341

    PubMed  CAS  Google Scholar 

  • Amaral DG, Dent JA (1981) Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J Comp Neurol 195:51–86

    PubMed  CAS  Google Scholar 

  • Ambrogini P, Cuppini R, Ferri P, Mancini C, Ciaroni S, Voci A, Gerdoni E, Gallo G (2005) Thyroid hormones affect neurogenesis in the dentate gyrus of adult rat. Neuroendocrinology 81:244–253

    PubMed  CAS  Google Scholar 

  • Appleyard ME (1995) Acetylcholinesterase induces long-term potentiation in CA1 pyramidal cells by a mechanism dependent on metabotropic glutamate receptors. Neurosci Lett 190:25–28

    PubMed  CAS  Google Scholar 

  • Ausó E, Lavado-Autric R, Cuevas E, Del Rey FE, Morreale De Escobar G, Berbel P (2004) A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology 145:4037–4047

    PubMed  Google Scholar 

  • Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    PubMed  CAS  Google Scholar 

  • Battastini AM, da Rocha JB, Barcellos CK, Dias RD, Sarkis JJ (1991) Characterization of an ATP diphosphohydrolase (EC 3.6.1.5) in synaptosomes from cerebral cortex of adult rats. Neurochem Res 16:1303–1310

    PubMed  CAS  Google Scholar 

  • Battie CA, Verity MA (1979) Membrane enzyme development in nerve ending mitochondria during neonatal hypothyroidism. Dev Neurosci 2:139–148

    CAS  Google Scholar 

  • Baudier J, Deloulme JC, Van Dorsselaer A, Black D, Matthes HW (1991) Purification and characterization of a brain-specific protein kinase C substrate, neurogranin (p17). Identification of a consensus amino acid sequence between neurogranin and neuromodulin (GAP43) that corresponds to the protein kinase C phosphorylation site and the calmodulin-binding domain. J Biol Chem 266:229–237

    PubMed  CAS  Google Scholar 

  • Bayer SA (1980) Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol 190:87–114

    PubMed  CAS  Google Scholar 

  • Berbel P, Marco P, Cerezo JR, DeFelipe J (1996) Distribution of parvalbumin immunoreactivity in the neocortex of hypothyroid adult rats. Neurosci Lett 204:65–68

    PubMed  CAS  Google Scholar 

  • Bernal J (2005) Thyroid hormones and brain development. Vitam Horm 71:95–122

    PubMed  CAS  Google Scholar 

  • Bernal J (2007) Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 3:249–259

    PubMed  CAS  Google Scholar 

  • Braganhol E, Bruno AN, Bavaresco L, Barreto-Chaves ML, Sarkis JJ, Battastini AM (2006) Neonatal hypothyroidism affects the adenine nucleotides metabolism in astrocyte cultures from rat brain. Neurochem Res 31:449–454

    PubMed  CAS  Google Scholar 

  • Broude E, McAtee M, Kelley MS, Bregman BS (1997) c-Jun expression in adult rat dorsal root ganglion neurons: differential response after central or peripheral axotomy. Exp Neurol 148:367–377

    PubMed  CAS  Google Scholar 

  • Bruno AN, Ricachenevsky FK, Pochmann D, Bonan CD, Battastini AM, Barreto-Chaves ML, Sarkis JJ (2005) Hypothyroidism changes adenine nucleotide hydrolysis in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development. Int J Dev Neurosci 23:37–44

    PubMed  CAS  Google Scholar 

  • Burgard EC, Sarvey JM (1990) Muscarinic receptor activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus. Neurosci Lett 116:34–39

    PubMed  CAS  Google Scholar 

  • Calloni GW, Penno CA, Cordova FM, Trentin AG, Neto VM, Leal RB (2005) Congenital hypothyroidism alters the phosphorylation of ERK1/2 and p38MAPK in the hippocampus of neonatal rats. Brain Res Dev Brain Res 154:141–145

    PubMed  CAS  Google Scholar 

  • Calzà L, Aloe L, Giardino L (1997) Thyroid hormone-induced plasticity in the adult rat brain. Brain Res Bull 44:549–557

    PubMed  Google Scholar 

  • Carageorgiou H, Pantos C, Zarros A, Stolakis V, Mourouzis I, Cokkinos D, Tsakiris S (2007) Changes in acetylcholinesterase, Na+, K + -ATPase, and Mg2 + -ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats. Metabolism 56:1104–1110

    PubMed  CAS  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    PubMed  CAS  Google Scholar 

  • Chiquet-Ehrismann R, Hagios C, Schenk S (1995) The complexity in regulating the expression of tenascins. Bioessays 17:873–878

    PubMed  CAS  Google Scholar 

  • Clos J, Legrand C (1990) An interaction between thyroid hormone and nerve growth factor promotes the development of hippocampus, olfactory bulbs and cerebellum: a comparative biochemical study of normal and hypothyroid rats. Growth Factors 3:205–220

    PubMed  CAS  Google Scholar 

  • Constant EL, de Volder AG, Ivanoiu A, Bol A, Labar D, Seghers A, Cosnard G, Melin J, Daumerie C (2001) Cerebral blood flow and glucose metabolism in hypothyroidism: a positron emission tomography study. J Clin Endocrinol Metab 86:3864–3870

    PubMed  CAS  Google Scholar 

  • Correia N, Mullally S, Cooke G, Tun TK, Phelan N, Feeney J, Fitzgibbon M, Boran G, O'Mara S, Gibney J (2009) Evidence for a specific defect in hippocampal memory in overt and subclinical hypothyroidism. J Clin Endocrinol Metab 94:3789–3797

    PubMed  CAS  Google Scholar 

  • Delange F (2000) The role of iodine in brain development. Proc Nutr Soc 59:75–79

    PubMed  CAS  Google Scholar 

  • Demchenko IT (1983) Blood supply in the conscious brain. Nauka, Leningrad

    Google Scholar 

  • Desouza LA, Ladiwala U, Daniel SM, Agashe S, Vaidya RA, Vaidya VA (2005) Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol Cell Neurosci 29:414–426

    PubMed  CAS  Google Scholar 

  • Dong J, Yin H, Liu W, Wang P, Jiang Y, Chen J (2005) Congenital iodine deficiency and hypothyroidism impair LTP and decrease c-fos and c-jun expression in rat hippocampus. Neurotoxicology 26:417–426

    PubMed  CAS  Google Scholar 

  • Farahvar A, Darwish NH, Sladek S, Meisami E (2007) Marked recovery of functional metabolic activity and laminar volumes in the rat hippocampus and dentate gyrus following postnatal hypothyroid growth retardation: A quantitative cytochrome oxidase study. Exp Neurol 204:556–568

    PubMed  CAS  Google Scholar 

  • Friauf E, Wenz M, Oberhofer M, Nothwang HG, Balakrishnan V, Knipper M, Löhrke S (2008) Hypothyroidism impairs chloride homeostasis and onset of inhibitory neurotransmission in developing auditory brainstem and hippocampal neurons. Eur J Neurosci 28:2371–2380

    PubMed  Google Scholar 

  • Fukunaga K, Miyamoto E (1998) Role of MAP kinase in neurons. Mol Neurobiol 16:79–95

    PubMed  CAS  Google Scholar 

  • Furley AJ, Morton SB, Manalo D, Karagogeos D, Dodd J, Jessell TM (1990) The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell 61:157–170

    PubMed  CAS  Google Scholar 

  • Gabrichidze GO, Lazrishvili NI, Metreveli DS, Bekaya GL, Mitagvariya NP (2007) Local blood flow in the dorsal hippocampus and cerebellar cortex in the offspring of iodine-deficient rats. Neurosci Behav Physiol 37:495–498

    PubMed  CAS  Google Scholar 

  • Gage FH (2002) Neurogenesis in the adult brain. J Neurosci 22:612–613

    PubMed  CAS  Google Scholar 

  • García-Fernández LF, Rausell E, Urade Y, Hayaishi O, Bernal J, Muñoz A (1997) Hypothyroidism alters the expression of prostaglandin D2 synthase/beta trace in specific areas of the developing rat brain. Eur J Neurosci 9:1566–1573

    PubMed  Google Scholar 

  • Gerges NZ, Alkadhi KA (2004) Hypothyroidism impairs late LTP in CA1 region but not in dentate gyrus of the intact rat hippocampus: MAPK involvement. Hippocampus 14:40–45

    PubMed  CAS  Google Scholar 

  • Gerges NZ, Stringer JL, Alkadhi KA (2001) Combination of hypothyroidism and stress abolishes early LTP in the CA1 but not dentate gyrus of hippocampus of adult rats. Brain Res 922:250–260

    PubMed  CAS  Google Scholar 

  • Gilbert ME (2004) Alterations in synaptic transmission and plasticity in area CA1 of adult hippocampus following developmental hypothyroidism. Brain Res Dev Brain Res 148:11–18

    PubMed  CAS  Google Scholar 

  • Gilbert ME, Paczkowski C (2003) Propylthiouracil (PTU)-induced hypothyroidism in the developing rat impairs synaptic transmission and plasticity in the dentate gyrus of the adult hippocampus. Brain Res Dev Brain Res 145:19–29

    PubMed  CAS  Google Scholar 

  • Gilbert ME, Sui L, Walker MJ, Anderson W, Thomas S, Smoller SN, Schon JP, Phani S, Goodman JH (2007) Thyroid hormone insufficiency during brain development reduces parvalbumin immunoreactivity and inhibitory function in the hippocampus. Endocrinology 148:92–102

    PubMed  CAS  Google Scholar 

  • Gilroy J, Meyer JS (1975) Medical Neurology, 2nd edn. MacMillan, New York, pp 239–241

    Google Scholar 

  • Glinoer D (2007) The importance of iodine nutrition during pregnancy. Public Health Nutr 10:1542–1546

    PubMed  Google Scholar 

  • Gu Y, Ihara Y (2000) Evidence that collapsin response mediator protein-2 is involved in the dynamics of microtubules. J Biol Chem 275:17917–17920

    PubMed  CAS  Google Scholar 

  • Guadaño Ferraz A, Escobar del Rey F, Morreale de Escobar G, Innocenti GM, Berbel P (1994) The development of the anterior commissure in normal and hypothyroid rats. Brain Res Dev Brain Res 81:293–308

    PubMed  Google Scholar 

  • Hemmings SJ, Shuaib A (1998) Hypothyroidism-evoked shifts in hippocampal adrenergic receptors: implications to ischemia-induced hippocampal damage. Mol Cell Biochem 185:161–169

    PubMed  CAS  Google Scholar 

  • Herdegen T, Skene P, Bähr M (1997) The c-Jun transcription factor—bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 20:227–231

    PubMed  CAS  Google Scholar 

  • Huang XW, Zhao ZY, Ji C (2005a) Effects of hypothyroidism on apoptosis and the expression of Bcl-2 and Bax gene in the neonatal rat hippocampus neurons. Zhonghua Er Ke Za Zhi 43:48–52

    PubMed  Google Scholar 

  • Huang XW, Yang RL, Zhao ZY, Ji C, Yang RW (2005b) Mechanism for apoptosis of hippocampus neuron induced by hypothyroidism in perinatal rats. Zhejiang Da Xue Xue Bao Yi Xue Ban 34:298–303

    PubMed  CAS  Google Scholar 

  • Huang XW, Yin HM, Ji C, Qin YF, Yang RW, Zhao ZY (2008a) Effects of perinatal hypothyroidism on rat behavior and its relation with apoptosis of hippocampus neurons. J Endocrinol Invest 31:8–15

    PubMed  CAS  Google Scholar 

  • Huang YH, Tsai MM, Lin KH (2008b) Thyroid hormone dependent regulation of target genes and their physiological significance. Chang Gung Med J 31:325–334

    PubMed  Google Scholar 

  • Ibarrola N, Rodríguez-Peña A (1997) Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development. Brain Res 752:285–293

    PubMed  CAS  Google Scholar 

  • Iglesias T, Caubín J, Stunnenberg HG, Zaballos A, Bernal J, Muñoz A (1996) Thyroid hormone-dependent transcriptional repression of neural cell adhesion molecule during brain maturation. EMBO J 15:4307–4316

    PubMed  CAS  Google Scholar 

  • Iniguez MA, De Lecea L, Guadano-Ferraz A, Morte B, Gerendasy D, Sutcliffe JG, Bernal J (1996) Cell-specific effects of thyroid hormone on RC3/neurogranin expression in rat brain. Endocrinology 137:1032–1041

    PubMed  CAS  Google Scholar 

  • Juárez de Ku LM, Sharma-Stokkermans M, Meserve LA (1994) Thyroxine normalizes polychlorinated biphenyl (PCB) dose-related depression of choline acetyltransferase (ChAT) activity in hippocampus and basal forebrain of 15-day-old rats. Toxicology 94:19–30

    PubMed  Google Scholar 

  • Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    PubMed  CAS  Google Scholar 

  • Katyare SS, Bangur CS, Howland JL (1994) Is respiratory activity in the brain mitochondria responsive to thyroid hormone action? A critical re-evaluation. Biochem J 302:857–860

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Koppel AM, Luo Y, Raper JA (1997) A role for collapsin-1 in olfactory and cranial sensory axon guidance. J Neurosci 17:8339–8352

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Tsuji R, Yoshioka T, Kushida M, Yabushita S, Sasaki M, Mino T, Seki T (2005) Effects of hypothyroidism induced by perinatal exposure to PTU on rat behaviour and synaptic gene expression. Toxicology 212:135–147

    PubMed  CAS  Google Scholar 

  • Kosaka T, Katsumaru H, Hama K, Wu JY, Heizmann CW (1987) GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus. Brain Res 419:119–130

    PubMed  CAS  Google Scholar 

  • Kouniniotou-Krontiri P, Tsakiris S (1989) Time dependence of Li+ action on acetylcholinesterase activity in correlation with spontaneous quantal release of acetylcholine in rat diaphragm. Jpn J Physiol 39:429–440

    PubMed  CAS  Google Scholar 

  • Lass P, Slawek J, Derejko M, Rubello D (2008) Neurological and psychiatric disorders in thyroid dysfunctions. The role of nuclear medicine: SPECT and PET imaging. Minerva Endocrinol 33:75–84

    PubMed  CAS  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    PubMed  CAS  Google Scholar 

  • Legrand J (1982-1983) Thyroid hormones and maturation of the nervous system. J Physiol (Paris) 78:603–652

    Google Scholar 

  • Madeira MD, Paula-Barbosa M, Cadete-Leite A, Tavares MA (1988) Unbiased estimate of hippocampal granule cell numbers in hypothyroid and in sex-age-matched control rats. J Hirnforsch 29:643–650

    PubMed  CAS  Google Scholar 

  • Madeira MD, Cadete-Leite A, Andrade JP, Paula-Barbosa MM (1991a) Effects of hypothyroidism upon the granular layer of the dentate gyrus in male and female adult rats: a morphometric study. J Comp Neurol 314:171–186

    PubMed  CAS  Google Scholar 

  • Madeira MD, Cadete-Leite A, Sousa N, Paula-Barbosa MM (1991b) The supraoptic nucleus in hypothyroid and undernourished rats: an experimental morphometric study. Neuroscience 41:827–839

    PubMed  CAS  Google Scholar 

  • Madeira MD, Sousa N, Lima-Andrade MT, Calheiros F, Cadete-Leite A, Paula-Barbosa MM (1992) Selective vulnerability of the hippocampal pyramidal neurons to hypothyroidism in male and female rats. J Comp Neurol 322:501–518

    PubMed  CAS  Google Scholar 

  • Martínez-Galán JR, Pedraza P, Santacana M, Escobar del Ray F, Morreale de Escobar G, Ruiz-Marcos A (1997) Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat fetus. A model of neurological cretinism. J Clin Invest 99:2701–2709

    PubMed  Google Scholar 

  • Mash DC, Potter LT (1986) Autoradiographic localization of M1 and M2 muscarine receptors in the rat brain. Neuroscience 19:551–564

    PubMed  CAS  Google Scholar 

  • Mellström B, Pipaón C, Naranjo JR, Perez-Castillo A, Santos A (1994) Differential effect of thyroid hormone on NGFI-A gene expression in developing rat brain. Endocrinology 135:583–588

    PubMed  Google Scholar 

  • Montero-Pedrazuela A, Venero C, Lavado-Autric R, Fernández-Lamo I, García-Verdugo JM, Bernal J, Guadaño-Ferraz A (2006) Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior. Mol Psychiatry 11:361–371

    PubMed  CAS  Google Scholar 

  • Moreno M, de Lange P, Lombardi A, Silvestri E, Lanni A, Goglia F (2008) Metabolic effects of thyroid hormone derivatives. Thyroid 18:239–253

    PubMed  CAS  Google Scholar 

  • Moskovkin GN, Marshak TL (1982) Action of hypothyroidism on the metabolic maturation of the pyramidal neurons of the rat hippocampus. Biull Eksp Biol Med 94:112–114

    PubMed  CAS  Google Scholar 

  • Peeters RP (2008) Thyroid hormones and aging. Hormones (Athens) 7:28–35

    Google Scholar 

  • Pérez-Delgado MM, Ferres-Torres R, Castañeyra-Perdomo A, González-Hernández T (1987) Effects of hypothyroidism on the karyometric development of pyramidal neurons of the hippocampus (CA1), area 6 and area 17 in the male mouse. J Anat 150:23–29

    PubMed  Google Scholar 

  • Rabié A, Patel AJ, Clavel MC, Legrand J (1979) Effect of thyroid deficiency on the growth of the hippocampus in the rat. A combined biochemical and morphological study. Dev Neurosci 2:183–194

    PubMed  Google Scholar 

  • Rami A, Rabié A, Patel AJ (1986a) Thyroid hormone and development of the rat hippocampus: cell acquisition in the dentate gyrus. Neuroscience 19:1207–1216

    PubMed  CAS  Google Scholar 

  • Rami A, Patel AJ, Rabié A (1986b) Thyroid hormone and development of the rat hippocampus: morphological alterations in granule and pyramidal cells. Neuroscience 19:1217–1226

    PubMed  CAS  Google Scholar 

  • Rami A, Rabie A, Clos J (1989) The time course of hippocampal cholinergic innervation in the developing hypothyroid rat. A combined histochemical and biochemical study of acetylcholinesterase activity. Int J Dev Neurosci 7:301–308

    PubMed  CAS  Google Scholar 

  • Royland JE, Parker JS, Gilbert ME (2008) A genomic analysis of subclinical hypothyroidism in hippocampus and neocortex of the developing rat brain. J Neuroendocrinol 20:1319–1338

    PubMed  CAS  Google Scholar 

  • Sastry BS, Phillis JW (1977) Antagonism of biogenic amine-induced depression of cerebral cortical neurones by Na+, K + -ATPase in inhibitors. Can J Physiol Pharmacol 55:170–179

    PubMed  CAS  Google Scholar 

  • Sawin S, Brodish P, Carter CS, Stanton ME, Lau C (1998) Development of cholinergic neurons in rat brain regions: dose-dependent effects of propylthiouracil-induced hypothyroidism. Neurotoxicol Teratol 20:627–635

    PubMed  CAS  Google Scholar 

  • Schlessinger AR, Cowan WM, Gottlieb DI (1975) An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J Comp Neurol 159:149–175

    PubMed  CAS  Google Scholar 

  • Schlessinger AR, Cowan WM, Swanson LW (1978) The time of origin of neurons in Ammon’s horn and the associated retrohippocampal fields. Anat Embryol (Berl) 154:153–173

    CAS  Google Scholar 

  • Schoonover CM, Seibel MM, Jolson DM, Stack MJ, Rahman RJ, Jones SA, Mariash CN, Anderson GW (2004) Thyroid hormone regulates oligodendrocyte accumulation in developing rat brain white matter tracts. Endocrinology 145:5013–5020

    PubMed  CAS  Google Scholar 

  • Stanfield BB, Cowan WM (1979) The development of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 185:423–459

    PubMed  CAS  Google Scholar 

  • Sui L, Gilbert ME (2003) Pre- and postnatal propylthiouracil-induced hypothyroidism impairs synaptic transmission and plasticity in area CA1 of the neonatal rat hippocampus. Endocrinology 144:4195–4203

    PubMed  CAS  Google Scholar 

  • Sui L, Anderson WL, Gilbert ME (2005) Impairment in short-term but enhanced long-term synaptic potentiation and ERK activation in adult hippocampal area CA1 following developmental thyroid hormone insufficiency. Toxicol Sci 85:647–656

    PubMed  CAS  Google Scholar 

  • Sui L, Wang F, Li BM (2006) Adult-onset hypothyroidism impairs paired-pulse facilitation and long-term potentiation of the rat dorsal hippocampo-medial prefrontal cortex pathway in vivo. Brain Res 1096:53–60

    PubMed  CAS  Google Scholar 

  • Sutcliffe JG (1988) The genes for myelin revisited. Trends Genet 4:211–213

    PubMed  CAS  Google Scholar 

  • Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–183

    PubMed  CAS  Google Scholar 

  • Ujihara M, Urade Y, Eguchi N, Hayashi H, Ikai K, Hayaishi O (1988) Prostaglandin D2 formation and characterization of its synthetases in various tissues of adult rats. Arch Biochem Biophys 260:521–531

    PubMed  CAS  Google Scholar 

  • Wagner JA, Kostyk SK (1990) Regulation of neural cell survival and differentiation by peptide growth factors. Curr Opin Cell Biol 2:1050–1057

    PubMed  CAS  Google Scholar 

  • White AM, Matthews DB, Best PJ (2000) Ethanol, memory, and hippocampal function: a review of recent findings. Hippocampus 10:88–93

    PubMed  CAS  Google Scholar 

  • Williams GR (2008) Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol 20:784–794

    PubMed  CAS  Google Scholar 

  • Wong CC, Leung MS (2001) Effects of neonatal hypothyroidism on the expressions of growth cone proteins and axon guidance molecules related genes in the hippocampus. Mol Cell Endocrinol 184:143–150

    PubMed  CAS  Google Scholar 

  • Wotta DR, Wattenberg EV, Langason RB, el-Fakahany EE (1998) M1, M3 and M5 muscarinic receptors stimulate mitogen-activated protein kinase. Pharmacology 56:175–186

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their appreciation to the medical students Marianna Almpani, Ioanna Loupasi and Ioannis-Angelos Trantos for their assistance in manuscript preparation. The authors are grateful to Mr Ioannis Mantzikos (BSc, PGDip, MSc) for his assistance in manuscript improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos Tsakiris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koromilas, C., Liapi, C., Schulpis, K.H. et al. Structural and functional alterations in the hippocampus due to hypothyroidism. Metab Brain Dis 25, 339–354 (2010). https://doi.org/10.1007/s11011-010-9208-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-010-9208-8

Keywords

Navigation