Skip to main content

Advertisement

Log in

Concentration-Dependent Effect of Naringin on Intestinal Absorption of β1-Adrenoceptor Antagonist Talinolol Mediated by P-Glycoprotein and Organic Anion Transporting Polypeptide (Oatp)

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to clarify the impact of P-gp and Oatp on intestinal absorption of the β1-adrenoceptor antagonist talinolol.

Methods

P-gp-mediated transport was measured in LLC-PK1/MDR1 cells. Oatp-mediated uptake was evaluated with Xenopus oocytes expressing Oatp1a5. Rat intestinal permeability was measured by the in situ closed loop method. In vivo absorption was pharmacokinetically assessed by measuring plasma concentration after oral administration in rats.

Results

In LLC-PK1/MDR1 cells, the permeability of talinolol was markedly higher in the secretory direction than in the absorptive one. The uptake of talinolol by Xenopus oocytes expressing Oatp1a5 was significantly increased compared with that by water-injected oocytes. Naringin inhibited talinolol uptake by Oatp1a5 (IC 50 = 12.7 μM). The reported IC 50 value of naringin for P-gp-mediated transport of talinolol is approximately 2,000 μM. Rat intestinal permeability of talinolol was significantly decreased in the presence of 200 μM naringin, but was significantly increased by 2,000 μM naringin. Similar results were obtained in in vivo absorption studies in rats.

Conclusion

The absorption behavior of talinolol can be explained by the involvement of both P-gp and Oatp, based on characterization of talinolol transport by Oatp1a5 and P-gp, and the effects of naringin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AP:

Apical

AUC:

Area under the plasma concentration–time curve

BL:

Basolateral

DDI:

Drug–drug interactions

GFJ:

Grapefruit juice

MDR:

Multidrug resistance

OATP/Oatp:

Organic anion transporting polypeptide

P app :

Apparent permeability

P-gp:

P-glycoprotein

References

  1. P. Macheras, and P. Argyrakis. Gastrointestinal drug absorption: is it time to consider heterogeneity as well as homogeneity. Pharm. Res. 14:842–847 (1997). doi:10.1023/A:1012183313218.

    Article  PubMed  CAS  Google Scholar 

  2. H. Zhou. Pharmacokinetic strategies in deciphering atypical drug absorption profiles. J. Clin. Pharmacol. 43:211–227 (2003). doi:10.1177/0091270002250613.

    Article  PubMed  CAS  Google Scholar 

  3. A. Tsuji, and I. Tamai. Carrier-mediated intestinal transport of drugs. Pharm. Res. 13:963–977 (1996). doi:10.1023/A:1016086003070.

    Article  PubMed  CAS  Google Scholar 

  4. K. Naruhashi, I. Tamai, N. Inoue, H. Muraoka, Y. Sai, N. Suzuki, and A. Tsuji. Active intestinal secretion of new quinolone antimicrobials and the partial contribution of P-glycoprotein. J. Pharm. Pharmacol. 53:699–709 (2001). doi:10.1211/0022357011775820.

    Article  PubMed  CAS  Google Scholar 

  5. T. Tani, L. K. Gram, H. Arakawa, A. Kikuchi, M. Chiba, Y. Ishii, B. Steffansen, and I. Tamai. Involvement of organic anion transporting polypeptide 1a5 (Oatp1a5) in the intestinal absorption of endothelin receptor antagonist in rats. Pharm. Res. 25:1085–1091 (2008). doi:10.1007/s11095-007-9472-4.

    Article  PubMed  CAS  Google Scholar 

  6. Y. Tanigawara. Role of P-glycoprotein in drug disposition. Ther. Drug. Monit. 22:137–140 (2000). doi:10.1097/00007691-200002000-00029.

    Article  PubMed  CAS  Google Scholar 

  7. A. H. Schinkel. P-Glycoprotein, a gatekeeper in the blood–brain barrier. Adv. Drug Deliv. Rev. 36:179–194 (1999). doi:10.1016/S0169-409X(98)00085-4.

    Article  PubMed  CAS  Google Scholar 

  8. M. F. Fromm. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int. J. Clin. Pharmacol. Ther. 38:69–74 (2000).

    PubMed  CAS  Google Scholar 

  9. Y. Shirasaka, T. Sakane, and S. Yamashita. Effect of P-glycoprotein expression levels on the concentration-dependent permeability of drugs to the cell membrane. J. Pharm. Sci. 97:553–565 (2008). doi:10.1002/jps.21114.

    Article  PubMed  CAS  Google Scholar 

  10. Y. Shirasaka, Y. Masaoka, M. Kataoka, S. Sakuma, and S. Yamashita. Scaling of in vitro membrane permeability to predict P-glycoprotein-mediated drug absorption in vivo. Drug Metab. Dispos. 36:916–922 (2008). doi:10.1124/dmd.107.020040.

    Article  PubMed  CAS  Google Scholar 

  11. M. Verschraagen, C. H. Koks, J. H. Schellens, and J. H. Beijnen. P-glycoprotein system as a determinant of drug interactions: the case of digoxin–verapamil. Pharmacol. Res. 40:301–306 (1999). doi:10.1006/phrs.1999.0535.

    Article  PubMed  CAS  Google Scholar 

  12. D. K. Yu. The contribution of P-glycoprotein to pharmacokinetic drug–drug interactions. J. Clin. Pharmacol. 39:1203–1211 (1999). doi:10.1177/00912709922012006.

    Article  PubMed  CAS  Google Scholar 

  13. S. V. Ambudkar, S. Dey, C. A. Hrycyna, M. Ramachandra, I. Pastan, and M. M. Gottesman. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 39:361–398 (1999). doi:10.1146/annurev.pharmtox.39.1.361.

    Article  PubMed  CAS  Google Scholar 

  14. B. Trausch, R. Oertel, K. Richter, and T. Gramatté. Disposition and bioavailability of the beta 1-adrenoceptor antagonist talinolol in man. Biopharm. Drug Dispos. 16:403–414 (1995). doi:10.1002/bdd.2510160505.

    Article  PubMed  CAS  Google Scholar 

  15. K. Westphal, A. Weinbrenner, T. Giessmann, M. Stuhr, G. Franke, M. Zschiesche, R. Oertel, B. Terhaag, H. K. Kroemer, and W. Siegmund. Oral bioavailability of digoxin is enhanced by talinolol: evidence for involvement of intestinal P-glycoprotein. Clin. Pharmacol. Ther. 68:6–12 (2000). doi:10.1067/mcp.2000.107579.

    Article  PubMed  CAS  Google Scholar 

  16. W. Weitschies, A. Bernsdorf, T. Giessmann, M. Zschiesche, C. Modess, V. Hartmann, C. Mrazek, D. Wegner, S. Nagel, and W. Siegmund. The talinolol double-peak phenomenon is likely caused by presystemic processing after uptake from gut lumen. Pharm. Res. 22:728–735 (2005). doi:10.1007/s11095-005-2588-5.

    Article  PubMed  CAS  Google Scholar 

  17. U. Wetterich, H. Spahn-Langguth, E. Mutschler, B. Terhaag, W. Rösch, and P. Langguth. Evidence for intestinal secretion as an additional clearance pathway of talinolol enantiomers: concentration- and dose-dependent absorption in vitro and in vivo. Pharm. Res. 13:514–522 (1996). doi:10.1023/A:1016029601311.

    Article  PubMed  CAS  Google Scholar 

  18. M. Zschiesche, G. L. Lemma, K. J. Klebingat, G. Franke, B. Terhaag, A. Hoffmann, T. Gramatté, H. K. Kroemer, and W. Siegmund. Stereoselective disposition of talinolol in man. J. Pharm. Sci. 91:303–311 (2002). doi:10.1002/jps.10054.

    Article  PubMed  CAS  Google Scholar 

  19. H. Spahn-Langguth, and P. Langguth. Grapefruit juice enhances intestinal absorption of the P-glycoprotein substrate talinolol. Eur. J. Pharm. Sci. 12:361–367 (2001). doi:10.1016/S0928-0987(00)00191-3.

    Article  PubMed  CAS  Google Scholar 

  20. U. I. Schwarz, D. Seemann, R. Oertel, S. Miehlke, E. Kuhlisch, M. F. Fromm, R. B. Kim, D. G. Bailey, and W. Kirch. Grapefruit juice ingestion significantly reduces talinolol bioavailability. Clin. Pharmacol. Ther. 77:291–301 (2005). doi:10.1016/j.clpt.2004.11.111.

    Article  PubMed  CAS  Google Scholar 

  21. W. V. de Castro, S. Mertens-Talcott, H. Derendorf, and V. Butterweck. Grapefruit juice–drug interactions: grapefruit juice and its components inhibit P-glycoprotein (ABCB1) mediated transport of talinolol in Caco-2 cells. J. Pharm. Sci. 96:2808–2817 (2007). doi:10.1002/jps.20975.

    Article  PubMed  Google Scholar 

  22. G. K. Dresser, D. G. Bailey, B. F. Leake, U. I. Schwarz, P. A. Dawson, D. J. Freeman, and R. B. Kim. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin. Pharmacol. Ther. 71:11–20 (2002). doi:10.1067/mcp.2002.121152.

    Article  PubMed  CAS  Google Scholar 

  23. D. G. Bailey, G. K. Dresser, B. F. Leake, and R. B. Kim. Naringin is a major and selective clinical inhibitor of organic anion-transporting polypeptide 1A2 (OATP1A2) in grapefruit juice. Clin. Pharmacol. Ther. 81:495–502 (2007). doi:10.1038/sj.clpt.6100104.

    Article  PubMed  CAS  Google Scholar 

  24. I. Tamai, J. Nezu, H. Uchino, Y. Sai, A. Oku, M. Shimane, and A. Tsuji. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem. Biophys. Res. Commun. 273:251–260 (2000). doi:10.1006/bbrc.2000.2922.

    Article  PubMed  CAS  Google Scholar 

  25. D. Kobayashi, T. Nozawa, K. Imai, J. Nezu, A. Tsuji, and I. Tamai. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J. Pharmacol. Exp. Ther. 306:703–708 (2003). doi:10.1124/jpet.103.051300.

    Article  PubMed  CAS  Google Scholar 

  26. T. Nozawa, K. Imai, J. Nezu, A. Tsuji, and I. Tamai. Functional characterization of pH-sensitive organic anion transporting polypeptide OATP-B in human. J. Pharmacol. Exp. Ther. 308:438–445 (2004). doi:10.1124/jpet.103.060194.

    Article  PubMed  Google Scholar 

  27. T. Maeda, K. Takahashi, N. Ohtsu, T. Oguma, T. Ohnishi, R. Atsumi, and I. Tamai. Identification of influx transporter for the quinolone antibacterial agent levofloxacin. Mol. Pharm. 4:85–94 (2007). doi:10.1021/mp060082j.

    Article  PubMed  CAS  Google Scholar 

  28. I. Tamai, A. Saheki, R. Saitoh, Y. Sai, I. Yamada, and A. Tsuji. Nonlinear intestinal absorption of 5-hydroxytryptamine receptor antagonist caused by absorptive and secretory transporters. J. Pharmacol. Exp. Ther. 283:108–115 (1997).

    PubMed  CAS  Google Scholar 

  29. A. Kikuchi, T. Nozawa, T. Wakasawa, T. Maeda, and I. Tamai. Transporter-mediated intestinal absorption of fexofenadine in rats. Drug. Metab. Pharmacokinet. 21:308–314 (2006). doi:10.2133/dmpk.21.308.

    Article  PubMed  CAS  Google Scholar 

  30. M. Ofer, P. Langguth, and H. Spahn-Langguth. Bidirectional membrane transport: simulations of transport inhibition in uptake studies explain data obtained with flavonoids. Eur. J. Pharm. Sci. 29:251–258 (2006). doi:10.1016/j.ejps.2006.06.010.

    Article  PubMed  CAS  Google Scholar 

  31. U. I. Schwarz, T. Gramatté, J. Krappweis, R. Oertel, and W. Kirch. P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans. Int. J. Clin. Pharmacol. Ther. 38:161–167 (2000).

    PubMed  CAS  Google Scholar 

  32. A. Hanafy, P. Langguth, and H. Spahn-Langguth. Pretreatment with potent P-glycoprotein ligands may increase intestinal secretion in rats. Eur. J. Pharm. Sci. 12:405–415 (2001). doi:10.1016/S0928-0987(00)00195-0.

    Article  PubMed  CAS  Google Scholar 

  33. H. Spahn-Langguth, G. Baktir, A. Radschuweit, A. Okyar, B. Terhaag, P. Ader, A. Hanafy, and P. Langguth. P-glycoprotein transporters and the gastrointestinal tract: evaluation of the potential in vivo relevance of in vitro data employing talinolol as model compound. Int. J. Clin. Pharmacol. Ther. 36:16–24 (1998).

    PubMed  CAS  Google Scholar 

  34. U. I. Schwarz, T. Gramatté, J. Krappweis, A. Berndt, R. Oertel, O. von Richter, and W. Kirch. Unexpected effect of verapamil on oral bioavailability of the beta-blocker talinolol in humans. Clin. Pharmacol. Ther. 65:283–290 (1999). doi:10.1016/S0009-9236(99)70107-4.

    Article  PubMed  CAS  Google Scholar 

  35. Y. Shitara, D. Sugiyama, H. Kusuhara, Y. Kato, T. Abe, P. J. Meier, T. Itoh, and Y. Sugiyama. Comparative inhibitory effects of different compounds on rat oatpl (slc21a1)- and Oatp2 (Slc21a5)-mediated transport. Pharm. Res. 19:147–153 (2002). doi:10.1023/A:1014264614637.

    Article  PubMed  CAS  Google Scholar 

  36. U. Fagerholm, A. Lindahl, and H. Lennernäs. Regional intestinal permeability in rats of compounds with different physicochemical properties and transport mechanisms. J. Pharm. Pharmacol. 49:687–690 (1997).

    PubMed  CAS  Google Scholar 

  37. C. Hilgendorf, H. Spahn-Langguth, M. Rhedin, C. G. Regårdh, B. Löwenadler, and P. Langguth. Selective downregulation of the MDR1 gene product in Caco-2 cells by stable transfection to prove its relevance in secretory drug transport. Mol. Pharm. 2:64–73 (2005). doi:10.1021/mp049931y.

    Article  PubMed  CAS  Google Scholar 

  38. L. M. Augustine, R. J. Markelewicz, K. Boekelheide, and N. J. Cherrington. Xenobiotic and endobiotic transporter mRNA expression in the blood–testis barrier. Drug. Metab. Dispos. 33:182–189 (2005). doi:10.1124/dmd.104.001024.

    Article  PubMed  CAS  Google Scholar 

  39. Y. Koitabashi, T. Kumai, N. Matsumoto, M. Watanabe, S. Sekine, Y. Yanagida, and S. Kobayashi. Orange juice increased the bioavailability of pravastatin, 3-hydroxy-3-methylglutaryl CoA reductase inhibitor, in rats and healthy human subjects. Life Sci. 78:2852–2859 (2006). doi:10.1016/j.lfs.2005.11.006.

    Article  PubMed  CAS  Google Scholar 

  40. H. C. Walters, A. L. Craddock, H. Fusegawa, M. C. Willingham, and P. A. Dawson. Expression, transport properties, and chromosomal location of organic anion transporter subtype 3. Am. J. Physiol. Gastrointest. Liver Physiol. 279:G1188–1200 (2000).

    PubMed  CAS  Google Scholar 

  41. W. V. de Castro, S. Mertens-Talcott, A. Rubner, V. Butterweck, and H. Derendorf. Variation of flavonoids and furanocoumarins in grapefruit juices: a potential source of variability in grapefruit juice–drug interaction studies. J. Agric. Food. Chem. 54:249–255 (2006). doi:10.1021/jf0516944.

    Article  PubMed  Google Scholar 

  42. Y. Masaoka, Y. Tanaka, M. Kataoka, S. Sakuma, and S. Yamashita. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur. J. Pharm. Sci. 29:240–250 (2006). doi:10.1016/j.ejps.2006.06.004.

    Article  PubMed  CAS  Google Scholar 

  43. F. Tourniaire, M. Hassan, M. André, O. Ghiringhelli, C. Alquier, and M. J. Amiot. Molecular mechanisms of the naringin low uptake by intestinal Caco-2 cells. Mol. Nutr. Food Res. 49:957–962 (2005). doi:10.1002/mnfr.200500088.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikumi Tamai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirasaka, Y., Li, Y., Shibue, Y. et al. Concentration-Dependent Effect of Naringin on Intestinal Absorption of β1-Adrenoceptor Antagonist Talinolol Mediated by P-Glycoprotein and Organic Anion Transporting Polypeptide (Oatp). Pharm Res 26, 560–567 (2009). https://doi.org/10.1007/s11095-008-9771-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9771-4

KEY WORDS

Navigation