Skip to main content

Advertisement

Log in

Synthetic FXR Agonist GW4064 Prevents Diet-Induced Hepatic Steatosis and Insulin Resistance

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To examine the effect of farnesoid X receptor (FXR) activation by its synthetic agonist, 3-[2-[2-Chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]benzoic acid (GW4064) on diet-induced obesity and hepatic steatosis.

Methods

Fifteen week-old C57BL/6 mice fed with high-fat diet (HFD) or high-fat, high-cholesterol diet were treated by twice weekly injection of GW4064 (50 mg/kg) intraperitoneally or DMSO (carrier solution) for 6 weeks. Body weight, body composition and food intake were monitored weekly. Serum glucose and insulin levels and lipid content in the liver were measured at the end of study. Additionally, genes involved in lipogenesis, gluconeogenesis and inflammation were analyzed by real time PCR. CD36 protein level was detected by western blot.

Results

Activation of FXR by GW4064 suppressed weight gain in C57BL/6 mice fed with either HFD or high-fat and high-cholesterol diet. GW4064 treatment of mice significantly repressed diet-induced hepatic steatosis as evidenced by lower triglyceride and free fatty acid level in the liver. Analysis of genes involved in lipid metabolism showed GW4064 markedly reduced lipid transporter Cd36 gene expression without affecting expression of genes that are directly involved in lipogenesis. GW4064 treatment attenuated hepatic inflammation while having no effect on white adipose tissue. In addition, activation of FXR by GW4064 avoided diet-induced hyperinsulinemia and hyperglycemia through decreasing the transcript levels of phosphoenolpyruvate carboxykinase (Pepck) and glucose-6-phosphatase (G6pase), two key enzymes in gluconeogenesis.

Conclusions

The results verify the important function of FXR in diet-induced obesity and suggest that FXR agonists are promising therapeutic agents for obesity-associated metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Zhang Y, Kast-Woelbern HR, Edwards PA. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem. 2003;278:104–10.

    Article  PubMed  CAS  Google Scholar 

  2. Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3:543–53.

    Article  PubMed  CAS  Google Scholar 

  3. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–5.

    Article  PubMed  CAS  Google Scholar 

  4. Kok T, Hulzebos CV, Wolters H, Havinga R, Agellon LB, Stellaard F, et al. Enterohepatic circulation of bile salts in farnesoid x receptor-deficient mice—efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J Biol Chem. 2003;278:41930–7.

    Article  PubMed  CAS  Google Scholar 

  5. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102:731–44.

    Article  PubMed  CAS  Google Scholar 

  6. Holt JA, Luo GZ, Billin AN, Bisi J, McNeill YY, Kozarsky KF, et al. Definition of a novel growth factordependent signal cascade for the suppression of bile acid biosynthesis. Gene Dev. 2003;17:1581–91.

    Article  PubMed  CAS  Google Scholar 

  7. Claudel T, Inoue Y, Barbier O, Duran-Sandoval D, Kosykh V, Fruchart J, et al. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology. 2003;125:544–55.

    Article  PubMed  CAS  Google Scholar 

  8. Kast HR, Nguyen CM, Sinal CJ, Jones SA, Laffitte BA, Reue K, et al. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol Endocrinol. 2001;15:1720–8.

    Article  PubMed  CAS  Google Scholar 

  9. Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113:1408–18.

    PubMed  CAS  Google Scholar 

  10. Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 2006;116:1102–9.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A. 2006;103:1006–11.

    Article  PubMed  CAS  Google Scholar 

  12. Cipriani S, Mencarelli A, Palladino G, Fiorucci S. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res. 2010;51:771–84.

    Article  PubMed  CAS  Google Scholar 

  13. Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Grefhorst A, Abdelkarim M, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem. 2006;281:11039–49.

    Article  PubMed  CAS  Google Scholar 

  14. Prawitt J, Abdelkarim M, Stroeve JHM, Popescu I, Duez H, Velagapudi VR, et al. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes. 2011;60:1861–71.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang YQ, Ge XM, Heemstra LA, Chen WD, Xu JS, Smith JL, et al. Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice. Mol Endocrinol. 2012;26:272–80.

    Article  PubMed  CAS  Google Scholar 

  16. Maloney PR, Parks DJ, Haffner CD, Fivush AM, Chandra G, Plunket KD, et al. Identification of a chemical tool for the orphan nuclear receptor FXR. J Med Chem. 2000;43:2971–4.

    Article  PubMed  CAS  Google Scholar 

  17. Perlemuter G, Bigorgne A, Cassard-Doulcier AM, Naveau S. Nonalcoholic fatty liver disease: from pathogenesis to patient care. Nat Clin Pract Endocrinol Metab. 2007;3:458–69.

    Article  PubMed  CAS  Google Scholar 

  18. Subramanian S, Goodspeed L, Wang SR, Kim J, Zeng LX, Ioannou GN, et al. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J Lipid Res. 2011;52:1626–35.

    Article  PubMed  CAS  Google Scholar 

  19. Savard C, Tartaglione EV, Kuver R, Geoffrey WH, Farrell GC, Subramanian S, et al. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology. 2013;57:81–92.

    Google Scholar 

  20. Wouters K, van Gorp PJ, Bieghs V, Gijbels MJ, Duimel H, Lutjohann D, et al. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology. 2008;48:474–86.

    Article  PubMed  Google Scholar 

  21. Zhang S, Wang J, Liu Q, Harnish DC. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J Hepatol. 2009;51:380–8.

    Article  PubMed  CAS  Google Scholar 

  22. Hajri T, Hall AM, Jensen DR, Pietka TA, Drover VA, Tao H, et al. CD36-facilitated fatty acid uptake inhibits leptin production and signaling in adipose tissue. Diabetes. 2007;56:1872–80.

    Google Scholar 

  23. Coburn CT, Knapp FF, Febbraio Jr M, Beets AL, Silverstein RL, Abumrad NA. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem. 2000;275:32523–9.

    Article  PubMed  CAS  Google Scholar 

  24. Kim Y, Park T. DNA microarrays to define and search for genes associated with obesity. Biotechnol J. 2010;5:99–112.

    Article  PubMed  CAS  Google Scholar 

  25. Miquilena-Colina ME, Lima-Cabello E, Sanchez-Campos S, Garcia-Mediavilla MV, Fernandez-Bermejo M, Lozano-Rodriguez T, et al. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut. 2011;60:1394–402.

    Article  PubMed  CAS  Google Scholar 

  26. Koonen DPY, Jacobs RL, Febbraio M, Young ME, Soltys CLM, Ong H, et al. Increased hepatic CD36 expression contributes to dyslipidemia associated with dietinduced obesity. Diabetes. 2007;56:2863–71.

    Article  PubMed  CAS  Google Scholar 

  27. Renga B, Francisci D, D’Amore C, Schiaroli E, Mencarelli A, Cipriani S, et al. The HIV matrix protein p17 subverts nuclear receptors expression and induces a STAT1-dependent proinflammatory phenotype in monocytes. PLoS One. 2012;7:e35924.

    Article  PubMed  CAS  Google Scholar 

  28. Mencarelli A, Renga B, Distrutti E, Fiorucci S. Antiatherosclerotic effect of farnesoid X receptor. Am J Physiol Heart Circ Physiol. 2009;296:H272–81.

    Article  PubMed  CAS  Google Scholar 

  29. Ma Y, Liu D. Activation of pregnane X receptor by pregnenolone 16 alpha-carbonitrile prevents high-fat diet-induced obesity in AKR/J mice. PLoS One. 2012;7:e38734.

    Article  PubMed  CAS  Google Scholar 

  30. Bieghs V, Verheyen F, van Gorp PJ, Hendrikx T, Wouters K, Lutjohann D, et al. Internalization of modified lipids by CD36 and SR-A leads to hepatic inflammation and lysosomal cholesterol storage in Kupffer cells. PLoS One. 2012;7:e34378.

    Article  PubMed  CAS  Google Scholar 

  31. Cai L, Wang Z, Ji A, Meyer JM, van der Westhuyzen DR. Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet-induced obesity. PLoS One. 2012;7:e36785.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA. Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev. 2004;18:157–69.

    Article  PubMed  CAS  Google Scholar 

  33. Duran-Sandoval D, Cariou B, Percevault F, Hennuyer N, Grefhorst A, van Dijk TH, et al. The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition. J Biol Chem. 2005;280:29971–9.

    Article  PubMed  CAS  Google Scholar 

  34. Cariou B, Staels B. FXR: a promising target for the metabolic syndrome? Trends Pharmacol Sci. 2007;28:236–43.

    Article  PubMed  CAS  Google Scholar 

  35. Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev. 2007;87:507–20.

    Article  PubMed  CAS  Google Scholar 

  36. Kalaany NY, Mangelsdorf DJ. LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol. 2006;68:159–91.

    Article  PubMed  CAS  Google Scholar 

  37. Malerod L, Sporstol M, Juvet LK, Mousavi SA, Gjoen T, Berg T, et al. Bile acids reduce SR-BI expression in hepatocytes by a pathway involving FXR/RXR, SHP, and LRH-1. Biochem Biophys Res Commun. 2005;336:1096–105.

    Article  PubMed  CAS  Google Scholar 

  38. Zhou J, Febbraio M, Wada T, Zhai Y, Kuruba R, He J, et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology. 2008;134:556–67.

    Article  PubMed  CAS  Google Scholar 

  39. Silbernagel G, Kovarova M, Cegan A, Machann J, Schick F, Lehmann R, et al. High hepatic SCD1 activity is associated with low liver fat content in healthy subjects under a lipogenic diet. J Clin Endocrinol Metab. 2012;97:E2288–92.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank Ms. Ryan Fugett for critical and proof read the manuscript. This work was supported in part by the National Institute of Health [RO1EB007357 and RO1HL098295]. The authors have no conflict of interest, financial or otherwise, to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Huang, Y., Yan, L. et al. Synthetic FXR Agonist GW4064 Prevents Diet-Induced Hepatic Steatosis and Insulin Resistance. Pharm Res 30, 1447–1457 (2013). https://doi.org/10.1007/s11095-013-0986-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-0986-7

KEY WORDS

Navigation