Skip to main content

Advertisement

Log in

Efficient, large-scale synthesis and preclinical studies of MRS5698, a highly selective A3 adenosine receptor agonist that protects against chronic neuropathic pain

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

We reported that 2-(3,4-difluorophenylethynyl)-N 6-3-chlorobenzyl (N)-methanocarba adenosine derivative 1 (MRS5698) binds selectively to human and mouse A3 adenosine receptors (A3ARs, K i 3 nM). It is becoming an important pharmacological tool for defining A3AR effects and is orally active in a chronic neuropathic pain model. Here, we introduce a new synthetic route for MRS5698 from d-ribose, suitable for a scale-up on a multi-gram scale, and we measure in vitro and in vivo ADME-Tox parameters. MRS5698 was very stable in vitro, failed to inhibit CYPs at <10 μM, and was largely bound to plasma proteins. It was well tolerated in the rat at doses of ≤200 mg/kg i.p. A 1 mg/kg i.p. dose in the mouse displayed t 1/2 of 1.09 h and plasma Cmax of 204 nM at 1 h with an AUC of 213 ng × h/mL. CACO-2 bidirectional transport studies suggested intestinal efflux of MRS5698 (efflux ratio 86). Although the oral %F is only 5 %, the beneficial effect to reverse pain lasted for at least 2 h in the CCI model in rats, using the same vehicle for oral administration of a high dose. The stability, low toxicity, lack of CYP interaction, pharmacokinetic half-life, and in vivo efficacy suggest that MRS5698 is a preferred compound for further consideration as a treatment for neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADME:

Absorption, distribution, metabolism, and excretion

AR:

Adenosine receptor

CCI:

Chronic constriction injury

CHO:

Chinese hamster ovary

CIPN:

Chemotherapy-induced peripheral neuropathy

Cl-IB-MECA:

1-deoxy-1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide

CNS:

Central nervous system

CYP:

Cytochrome P450

DMF:

N,N-dimethylformamide

DCC:

Dicyclohexylcarbodiimide

DMSO:

Dimethylsulfoxide

EDC:

N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide

EL:

Extracellular loop

GMP:

Good manufacturing practice

GPCR:

G protein-coupled receptor

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

HOBt:

1-Hydroxybenzyltriazole

HP-β-CD:

2-Hydroxypropyl-β-cyclodextrin

HRMS:

High resolution mass spectroscopy

IB-MECA:

1-Deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide

IND:

Investigational New Drug

MRS5698:

(1S,2R,3S,4R,5S)-4-(6-((3-Chlorobenzyl)amino)-2-((3,4-difluorophenyl)ethynyl)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide

MTD:

Maximum tolerated dose

MW:

Molecular weight

NMR:

Nuclear magnetic resonance

PBS:

Phosphate-buffered saline

PDC:

Pyridinum dichromate

PEG:

Polyethylene glycol

PK:

Pharmacokinetic

PWT:

Paw withdrawal threshold

SAR:

Structure-affinity relationship

SGF:

Stimulated gastric fluid

SGF:

Stimulated intestinal fluid

trp:

Tryptophan

TBAF:

Tetra-n-butylammonium fluoride

TBDPS:

tert-Butyldiphenylsilyl

TEER:

Transepithelial electrical resistance

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

XTT:

2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide

References

  1. Renfrey S, Downton C, Featherstone J (2003) The painful reality. Nat Rev Drug Discov 2:175–176

    Article  CAS  PubMed  Google Scholar 

  2. Grosser T, Fries S, FitzGerald GA (2006) Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest 116:4–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mao J, Price DD, Mayer DJ (1998) Mechanisms of hyperalgesia and morphine tolerance: a current view of their possible interactions. Pain 62:259–274

    Article  Google Scholar 

  4. Arner S, Rawal N, Gustafsson LL (1988) Clinical experience of long-term treatment with epidural and intrathecal opioids—a nationwide survey. Acta Anaesthesiol Scand 32:253–259

    Article  CAS  PubMed  Google Scholar 

  5. Ossipov MH, Lai J, King T, Vanderah TW, Malan TP Jr, Hruby VJ et al (2004) Antinociceptive and nociceptive actions of opioids. J Neurobiol 61:126–148

    Article  CAS  PubMed  Google Scholar 

  6. Torrance N, Smith BH, Bennett MI, Lee AJ (2006) The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey. J Pain 7:281–289

    Article  PubMed  Google Scholar 

  7. Cata JP, Weng HR, Lee BN, Reuben JM, Dougherty PM (2006) Clinical and experimental findings in humans and animals with chemotherapy-induced peripheral neuropathy. Minerva Anesthesiol 72:151–169

    CAS  Google Scholar 

  8. Farquhar-Smith P (2011) Chemotherapy-induced neuropathic pain. Curr Opin Support Palliat Care 5:1–7

    Article  PubMed  Google Scholar 

  9. Chen Z, Janes K, Chen C, Doyle T, Tosh DK, Jacobson KA et al (2012) Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB J 26:1855–1865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Janes K, Wahlman C, Little J, Doyle T, Tosh DK, Jacobson KA et al (2015) Spinal neuroimmmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav Immun 44:91–99

    Article  CAS  PubMed  Google Scholar 

  11. Ford A, Castonguay A, Cottet M, Little JW, Chen Z, Liguori A et al (2015) Engagement of the GABA to KCC2 signaling pathway contributes to the analgesic effects of A3AR agonists in neuropathic pain. J Neurosci 35:6057–6067

    Article  CAS  PubMed  Google Scholar 

  12. Tosh DK, Deflorian F, Phan K, Gao ZG, Wan TC, Gizewski E et al (2012) Structure-guided design of A3 adenosine receptor-selective nucleosides: combination of 2-arylethynyl and bicyclo[3.1.0]hexane substitutions. J Med Chem 55:4847–4860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA (2012) Pharmacological and therapeutic effects of A3 adenosine receptor (A3AR) agonists. Drug Discov Today 17:359–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Paoletta S, Tosh DK, Salvemini D, Jacobson KA (2014) Structural probing of off-target G protein-coupled receptor activities within a series of adenosine/adenine congeners. PLoS ONE 9, e97858. doi:10.1371/journal.pone.0097858

    Article  PubMed Central  PubMed  Google Scholar 

  15. Little JW, Ford A, Symons-Liguori AM, Chen Z, Janes K, Doyle T et al (2015) Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states. Brain 138:28–35

    Article  PubMed  Google Scholar 

  16. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  CAS  PubMed  Google Scholar 

  17. Di Sotto A, Maffei F, Hrelia P, Di Giacomo S, Pagano E, Borrelli F et al (2014) Genotoxicity assessment of some cosmetic and food additives. Regul Toxicol Pharmacol 68:16–22

    Article  PubMed  Google Scholar 

  18. Di Sotto A, Evandri MG, Mazzanti G (2008) Antimutagenic and mutagenic activities of some terpenes in the bacterial reverse mutation assay. Mutat Res 653:130–133

    Article  PubMed  Google Scholar 

  19. Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462

    Article  CAS  PubMed  Google Scholar 

  20. Choi WJ, Moon HR, Kim HO, Yoo BN, Lee JA, Shin DH et al (2004) Preparative and stereoselective synthesis of the versatile intermediate for carbocyclic nucleosides: effects of the bulky protecting groups to enforce facial selectivity. J Org Chem 69:2634–2636

    Article  CAS  PubMed  Google Scholar 

  21. Lee JA, Kim HO, Tosh DK, Moon HP, Kim S et al (2006) Stereoselective synthesis of 2’-C-methyl-cyclopropyl-fused carbanucleosides as potential anti-HCV agents. Org Lett 8:5081–5083

    Article  CAS  PubMed  Google Scholar 

  22. Michel BY, Strazewski P (2009) Total syntheses of a conformationally locked north-type methanocarba puromycin analogue and a dinucleotide derivative. Chem Eur J 15:6244–6257

    Article  CAS  PubMed  Google Scholar 

  23. Joshi BV, Melman A, Mackman RL, Jacobson KA (2008) Synthesis of ethyl (1S,2R,3S,4S,5S)-2,3-O-(isopropylidene)-4-hydroxy-bicyclo[3.1.0]hexane-carboxylate from L-ribose: a versatile chiral synthon for preparation of adenosine and P2 receptor ligands. Nucleosides Nucleotides Nucleic Acids 27:279–291

    Article  CAS  PubMed  Google Scholar 

  24. Balcar H, Shinde T, Naděžda Žilková N, Bastl Z (2011) Hoveyda–Grubbs type metathesis catalyst immobilized on mesoporous molecular sieves MCM-41 and SBA-15. Beilstein J Org Chem 7:22–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  26. Rankovic Z (2015) CNS drug design: balancing physicochemical properties for optimal brain exposure. J Med Chem. doi:10.1021/jm501535r

    PubMed  Google Scholar 

  27. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  28. Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic properties using graph-based signatures. J Med Chem 58:4066–4072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Schoonen WG, de Roos JA, Westerink WM, Débiton E (2005) Cytotoxic effects of 110 reference compounds on HepG2 cells and for 60 compounds on HeLa, ECC-1 and CHO cells. II mechanistic assays on NAD(P)H, ATP and DNA contents. Toxicol In Vitro 19(4):491–503

    Article  CAS  PubMed  Google Scholar 

  30. Tosh DK, Finley A, Paoletta S, Moss SM, Gao ZG, Gizewski E et al (2014) In vivo phenotypic screening for treating chronic neuropathic pain: modification of C2-arylethynyl group of conformationally constrained A3 adenosine receptor agonists. J Med Chem 57:9901–9914

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Intramural Research Program of the NIH, National Institute of Diabetes and Digestive and Kidney Diseases (Z01 DK031117-27), and National Cancer Institute (R01CA169519). We thank Dr. Bryan L. Roth (University of North Carolina at Chapel Hill) and the National Institute of Mental Health’s Psychoactive Drug Screening Program (Contract # HHSN-271-2008-00025-C) for hERG screening data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Jacobson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 3766 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosh, D.K., Padia, J., Salvemini, D. et al. Efficient, large-scale synthesis and preclinical studies of MRS5698, a highly selective A3 adenosine receptor agonist that protects against chronic neuropathic pain. Purinergic Signalling 11, 371–387 (2015). https://doi.org/10.1007/s11302-015-9459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9459-2

Keywords

Navigation