Skip to main content

Advertisement

Log in

Roles of Activated Microglia in Hypoxia Induced Neuroinflammation in the Developing Brain and the Retina

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Amoeboid microglial cells (AMCs) in the developing brain display surface receptors and antigens shared by the monocyte-derived tissue macrophages. Activation of AMCs in the perinatal brain has been associated with periventricular white matter damage in hypoxic-ischemic conditions. The periventricular white matter, where the AMCs preponderate, is selectively vulnerable to hypoxia as manifested by death of premyelinating oligodendrocytes and degeneration of axons leading to neonatal mortality and long-term neurodevelopmental deficits. AMCs respond vigorously to hypoxia by producing excess amounts of inflammatory cytokines e.g. the tumor necrosis factor–α (TNF-α) and interleukin-1β (IL-1β) along with glutamate, nitric oxide (NO) and reactive oxygen species which collectively cause oligodendrocyte death, axonal degeneration as well as disruption of the immature blood brain barrier. A similar phenomenon is observed in the hypoxic developing cerebellum in which activated AMCs induced Purkinje neuronal death through production of TNF-α and IL-1β via their respective receptors. Hypoxia is also implicated in retinopathy of prematurity in which activation of AMCs has been shown to cause retinal ganglion cell death through production of TNF-α and IL-1β and NO. Because AMCs play a pivotal role in hypoxic injuries in the developing brain affecting both neurons and oligodendrocytes, a fuller understanding of the underlying molecular mechanisms of microglial activation under such conditions would be desirable for designing of a novel therapeutic strategy for management of hypoxic damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMCs:

Amoeboid microglial cells

AMPA:

Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

CNS:

Central nervous system

CR3:

Complement type 3 receptors

CSF-1:

Colony stimulating factor

GluR2-4:

AMPA glutamate receptors

IGF-1:

Insulin-like growth factor-1

IGF-2:

Insulin-like growth factor-2

IL-1 β:

Interleukin-1β

IL-1R:

Interleukin 1 receptor

iNOS:

Nitric oxide synthase

MBP:

Myelin basic protein

MCP-1:

Monocyte chemoattractant protein-1

M-CSF:

Macrophage-colony stimulating factor

MHC I:

Major histocompatibility class I antigens

MHC II:

Major histocompatibility class II antigens

NMDA:

N-methyl-D-aspartate

NR1, NR2A-D:

NMDA receptor subunits

NO:

Nitric oxide

PWM:

Periventricular white matter

PWMD:

Periventricular white matter damage

RGC:

Retinal ganglion cell

RGCs:

Retinal ganglion cells

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

TβRI and TβRII:

Transforming growth factor receptors I and II

TGF-βl:

Transforming growth factor βl

TNF-α:

Tumor necrosis factor –α

TNF-R1, TNF-R2 :

TNF receptor 1 or 2

References

  • Aarum J, Sandberg K, Haeberlein SL, Persson MA (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci USA 100:15983–8

    Article  PubMed  CAS  Google Scholar 

  • Abrahamson DR, Fearon DT (1983) Endocytosis of the C3b receptor of complement within coated pits in human polymorphonuclear leukocytes and monocytes. Lab Invest 48:162–168

    PubMed  CAS  Google Scholar 

  • Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Dev Brain Res 117:145–152

    Article  CAS  Google Scholar 

  • Aloisi F (2001) Immune function of microglia. Glia 36:165–179

    Article  PubMed  CAS  Google Scholar 

  • Aloisi F, Ria F, Penna G, Adorini L (1998) Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 activation. J Immunol 160:4671–4680

    PubMed  CAS  Google Scholar 

  • Antony JM, Paquin A, Nutt SL, Kaplan DR, Miller FD (2011) Endogenous microglia regulate development of embryonic cortical precursor cells. J Neurosci Res 89:286–98

    Article  PubMed  CAS  Google Scholar 

  • Barenberg P, Strahlendorf H, Strahlendorf J (2001) Hypoxia induces an excitotoxic-type of dark cell degeneration in cerebellar Purkinje neurons. Neurosci Res 40:245–254

    Article  PubMed  CAS  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  PubMed  CAS  Google Scholar 

  • Beller DI, Springer TA, Schreiber RD (1982) Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J Exp Med 156:1000–1009

    Article  PubMed  CAS  Google Scholar 

  • Biran V, Heine VM, Verney C, Sheldon RA, Spadafora R, Vexler ZS, Rowitch DH, Ferriero DM (2011) Cerebellar abnormalities following hypoxia alone compared to hypoxic-ischemic forebrain injury in the developing rat brain. Neurobiol Dis 41:138–146

    Article  PubMed  Google Scholar 

  • Brown GC (2007) Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans 35:1119–21

    Article  PubMed  CAS  Google Scholar 

  • Cajal SR (1913) Contribucio’n al conocimiento de la neuroglia del cerebro humano. Trab Lab Invest Biol 11:255–345

    Google Scholar 

  • Calvert JW, Zhang JH (2005) Pathophysiology of an hypoxic-ischemic insult during the perinatal period. Neurol Res 27:246–260

    Article  PubMed  Google Scholar 

  • Carloni S, Mazzoni E, Cimino M, De Simoni MG, Perego C, Scopa C, Balduini W (2006) Simvastatin reduces caspase-3 activation and inflammatory markers induced by hypoxia-ischemia in the newborn rat. Neurobiol Dis 21:119–126

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Yang P, Kijlstra A (2002) Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm 10:27–39

    Article  PubMed  Google Scholar 

  • Cuadros MA, Martin C, Coltey P, Almendros A, Navascues J (1993) First appearance, distribution and origin of macrophages in the early development of the avian central nervous system. J Comp Neurol 330:113–129

    Article  PubMed  CAS  Google Scholar 

  • Dammann O, Hagberg H, Leviton A (2001) Is periventricular leukomalacia an axonopathy as well as an oligopathy? Pediatr Res 49:453–457

    Article  PubMed  CAS  Google Scholar 

  • Davies MH, Eubanks JP, Powers MR (2006) Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina. Mol Vis 12:467–477

    PubMed  CAS  Google Scholar 

  • del Rio-Hortega P (1932) Microglia. In: Penfield W (ed) Cytology and cellular pathology of the nervous system, vol 2. Hoeber, New York, pp 483–534

    Google Scholar 

  • Deng W, Rosenberg PA, Volpe JJ, Jensen FE (2003) Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Proc Natl Acad Sci USA 100:6801–6806

    Article  PubMed  CAS  Google Scholar 

  • Deng YY, Lu J, Sivakumar V, Ling EA, Kaur C (2008) Amoeboid microglia in the periventricular white matter induces oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats. Brain Pathology 18:387–400

    Article  PubMed  CAS  Google Scholar 

  • Deng YY, Lu J, Ling EA, Kaur C (2009) Monocyte chemoattractant protein-1 (MCP-1) produced via NF-B signaling pathway mediates migration of amoeboid microglia in the periventricular white matter in hypoxic neonatal rats. Glia 57:604–621

    Article  PubMed  CAS  Google Scholar 

  • Deng YY, Lu J, Ling EA, Kaur C (2010) Microglia-derived macrophage colony stimulating factor promotes generation of proinflammatory cytokines by astrocytes in the periventricular white matter in the hypoxic neonatal brain. Brain Pathology 20:909–925

    PubMed  CAS  Google Scholar 

  • Dubois-Dalcq M, Murray K (2000) Why are growth factors important in oligodendrocyte physiology? Pathol Biol (Paris) 48:80–86

    CAS  Google Scholar 

  • El Khoury J, Luster AD (2008) Mechanisms of microglia accumulation in Alzheimer’s disease: therapeutic implications. Trends Pharmacol Sci 29:626–632

    Article  PubMed  CAS  Google Scholar 

  • Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–40

    Article  PubMed  CAS  Google Scholar 

  • Fern R, Moller T (2000) Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J Neurosci 20:34–42

    PubMed  CAS  Google Scholar 

  • Fiske BK, Brunjes PC (2000) Microglial activation in the developing rat olfactory bulb. Neuroscience 96:807–815

    Article  PubMed  CAS  Google Scholar 

  • Folkerth RD (2006) Periventricular leukomalacia: overview and recent findings. Pediatr Dev Pathol 9:3–13

    Article  PubMed  Google Scholar 

  • Follett PL, Deng W, Dai W, Talos DM, Massillon LJ, Rosenberg PA, Volpe JJ, Jensen FE (2004) Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci 24:4412–4420

    Article  PubMed  CAS  Google Scholar 

  • Fontaine V, Mohand-Said S, Hanoteau N, Fuchs C, Pfizenmaier K, Eisel U (2002) Neurodegenerative and neuroprotective effects of tumor Necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J Neurosci 22:RC216

    PubMed  Google Scholar 

  • Gilman S (1992) Cerebellum and motor dysfunction. In: Asbury AK, McKhann GM, McDonald WI (eds) Diseases of the nervous system: Clinical neurobiology, 2nd edn. WB Saunder, Philadelphia, pp 319–341

    Google Scholar 

  • Griot C, Vandevelde M, Richard A, Peterhans E, Stocker R (1990) Selective degeneration of oligodendrocytes mediated by reactive oxygen species. Free Radic Res Commun 11:181–193

    Article  PubMed  CAS  Google Scholar 

  • Guan J, Bennet L, George S, Wu D, Waldvogel HJ, Gluckman PD, Faull RL, Crosier PS, Gunn AJ (2001) Insulin-like growth factor-1 reduces postischemic white matter injury in fetal sheep. J Cereb Blood Flow Metab 21:493–502

    Article  PubMed  CAS  Google Scholar 

  • Guan J, Bennet L, Gluckman PD, Gunn AJ (2003) Insulin-like growth factor-1 and post-ischemic brain injury. Prog Neurobiol 70:443–462

    Article  PubMed  CAS  Google Scholar 

  • Guillemin G, Boussin FD, Le Grand R, Croitoru J, Coffigny H, Dormont D (1996) Granulocyte macrophage colony stimulating factor stimulates in vitro proliferation of astrocytes derived from simian mature brains. Glia 16:71–80

    Article  PubMed  CAS  Google Scholar 

  • Guo G, Bhat NR (2006) Hypoxia/reoxygenation differentially modulates NF-kappaB activation and iNOS expression in astrocytes and microglia. Antioxid Redox Signal 8:911–918

    Article  PubMed  CAS  Google Scholar 

  • Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155

    Article  PubMed  Google Scholar 

  • Hao C, Guilbert LJ, Fedoroff S (1990) Production of colony-stimulating factor-1 (CSF-1) by mouse astroglia in vitro. J Neurosci Res 27:314–23

    Article  PubMed  CAS  Google Scholar 

  • Hao AJ, Dheen ST, Ling EA (2002) Expression of macrophage colony-stimulating factor and its receptor in microglia activation is linked to teratogen-induced neuronal damage. Neuroscience 112:889–900

    Article  PubMed  CAS  Google Scholar 

  • Haynes RL, Baud O, Li J, Kinney HC, Volpe JJ, Folkerth DR (2005) Oxidative and nitrative injury in periventricular leukomalacia: a review. Brain Pathol 15:225–233

    Article  PubMed  CAS  Google Scholar 

  • Huo Y, Rangarajan P, Ling EA, Dheen ST (2011) Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microglia. BMC Neurosci 12:49

    Article  PubMed  CAS  Google Scholar 

  • Imamoto K, Leblond CP (1978) Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II. Origin of microglial cells. J Comp Neurol 180:139–163

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Saito H, Fukushima R, Inaba T, Lin MT, Fukatsu K, Muto T (1995) Growth hormone and insulinlike growth factor I enhance host defense in a murine sepsis model. Arch Surg 130:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Jack CS, Arbour N, Blain M, Meier UC, Prat A, Antel JP (2007) Th1 polarization of CD4+ T cells by Toll-like receptor 3-activated human microglia. J Neuropathol Exp Neurol 66:848–59

    Article  PubMed  CAS  Google Scholar 

  • Jacobson LK, Dutton GN (2000) Periventricular leukomalacia: an important cause of visual and ocular motility dysfunction in children. Surv Ophthalmol 45:1–13

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Mu D, Sheldon RA, Glidden DV, Ferriero DM (2003) Neonatal hypoxia-ischemia differentially upregulates MAGUKs and associated proteins in PSD-93-deficient mouse brain. Stroke 34:2958–2963

    Article  PubMed  CAS  Google Scholar 

  • Johnston MV (1997) Hypoxic and ischemic disorders of infants and children. Lecture for 38th meeting of Japanese Society of Child Neurology, Tokyo, Japan, July 1996. Brain Dev 19:235–239

    Article  PubMed  CAS  Google Scholar 

  • Jonakait GM, Luskin MB, Wei R, Tian XF, Ni L (1996) Conditioned medium from activated microglia promotes cholinergic differentiation in the basal forebrain in vitro. Dev Biol 177:85–95

    Article  PubMed  CAS  Google Scholar 

  • Jonakait GM, Wen Y, Wan Y, Ni L (2000) Macrophage cell-conditioned medium promotes cholinergic differentiation of undifferentiated progenitors and synergizes with nerve growth factor action in the developing basal forebrain. Exp Neurol 161:285–96

    Article  PubMed  CAS  Google Scholar 

  • Kadhim H, Tabarki B, De Prez C, Rona AM, Sébire G (2002) Interleukin-2 in the pathogenesis of perinatal white matter damage. Neurology 58:1125–1128

    Article  PubMed  CAS  Google Scholar 

  • Kadhim H, Khalifa M, Deltenre P, Casimir G, Sebire G (2006) Molecular mechanisms of cell death in periventricular leukomalacia. Neurology 67:293–299

    Article  PubMed  CAS  Google Scholar 

  • Kaur C, Ling EA (1995) Transient expression of transferrin receptors and localisation of iron in amoeboid microglia in postnatal rats. J Anat 186:165–173

    PubMed  CAS  Google Scholar 

  • Kaur C, Ling EA (1999) Increased expression of transferrin receptors and iron in amoeboid microglial cells in postnatal rats following an exposure to hypoxia. Neurosci Lett 26:183–186

    Article  Google Scholar 

  • Kaur C, Ling EA (2009) Periventricular white matter damage in the hypoxic neonatal brain: role of microglial cells. Prog Neurobiol 87:264–280

    Article  PubMed  CAS  Google Scholar 

  • Kaur C, Ling EA, Wong WC (1984) Cytochemical localisation of 5′-nucleotidase in amoeboid microglial cells in postnatal rats. J Anat 139:1–7

    PubMed  Google Scholar 

  • Kaur C, Ling EA, Wong WC (1985) Transformation of amoeboid microglial cells into microglia in the corpus callosum of the postnatal rat brain. An electron microscopical study. Arch Histol Jpn 48:17–25

    Article  PubMed  CAS  Google Scholar 

  • Kaur C, Ling EA, Wong WC (1986) Labelling of amoeboid microglial cells in rats of various ages following an intravenous injection of horseradish peroxidase. Acta Anat 125:132–137

    Article  PubMed  CAS  Google Scholar 

  • Kaur C, Hao AJ, Wu CH, Ling EA (2001) Origin of microglia. Microsc Res Tech 54:2–9

    Article  PubMed  CAS  Google Scholar 

  • Kaur C, Too HF, Ling EA (2004) Phagocytosis of Escherichia coli by amoeboid microglial cells in the developing brain. Acta Neuropathol (Berl) 107:204–208

    Article  CAS  Google Scholar 

  • Kaur C, Sivakumar V, Ang LS, Sunderasan L (2006a) Hypoxic damage to the periventricular white matter in neonatal brain: role of vascular endothelial growth factor, nitric oxide and excitotoxicity. J Neurochem 98:1200–1216

    Article  PubMed  CAS  Google Scholar 

  • Kaur C, Sivakumar V, Dheen ST, Ling EA (2006b) Insulin-like growth factor I and II expression and modulation in amoeboid microglial cells by lipopolysaccharide and retinoic acid. Neuroscience 138:1233–44

    Article  PubMed  CAS  Google Scholar 

  • Kaur C, Sivakumar V, Yip GW, Ling EA (2009a) Expression of Syndecan-2 in the amoeboid microglial cells and its involvement in inflammation in the hypoxic developing brain. Glia 57:336–349

    Article  PubMed  CAS  Google Scholar 

  • Kaur C, Sivakumar V, Foulds WS, Luu CD, Ling EA (2009b) Cellular and vascular changes in the retina of neonatal rats following an acute exposure to hypoxia. Investig Ophthalmol Vis Sci 50:5364–5374

    Article  Google Scholar 

  • Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M, Saya H, Suda T (2009) M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med 206:1089–102

    Article  PubMed  CAS  Google Scholar 

  • Lavigne MC, Malech HL, Holland SM, Leto TL (2001) Genetic requirement of p47phox for superoxide production by murine microglia. FASEB J 15:285–287

    PubMed  CAS  Google Scholar 

  • Lee SC, Liu W, Roth P, Dickson DW, Berman JW, Brosnan CF (1993) Macrophage colony-stimulating factor in human fetal astrocytes and microglia. Differential regulation by cytokines and lipopolysaccharide, and modulation of class II MHC on microglia. J Immunol 150:594–604

    PubMed  CAS  Google Scholar 

  • Leong SK, Ling EA (1992) Amoeboid and ramified microglia: their interrelationship and response to brain injury. Glia 6:39–47

    Google Scholar 

  • Li JJ, Lu J, Kaur C, Sivakumar V, Wu CY, Ling EA (2008) Effects of hypoxia on expression of transforming growth factor-beta1 and its receptors I and II in the amoeboid microglial cells and murine BV-2 cells. Neuroscience 156:662–72

    Article  PubMed  CAS  Google Scholar 

  • Limperopoulos C, du Plessis AJ (2006) Disorders of cerebellar growth and development. Curr Opin Pediatr 18:621–627

    Article  PubMed  Google Scholar 

  • Ling EA (1977) Light and electron microscopic demonstration of some lysosomal enzymes in the amoeboid microglia in neonatal rat brain. J Anat 123:637–648

    PubMed  CAS  Google Scholar 

  • Ling EA (1982) A light microscopic demonstration of amoeboid microglia and microglial cells in the retina of rats of various ages. Arch Histol Jpn 45:37–44

    Article  PubMed  CAS  Google Scholar 

  • Ling EA, Tan CK (1974) Amoeboid microglial cells in the corpus callosum of neonatal rats. Arch Histol Jpn 36:265–280

    Article  PubMed  CAS  Google Scholar 

  • Ling EA, Wong WC (1993) The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7:9–18

    Article  PubMed  CAS  Google Scholar 

  • Ling EA, Penney D, Leblond CP (1980) Use of carbon labelling to demonstrate the role of blood monocytes as precursors of the amoeboid cells present in the corpus callosum of postnatal rats. J Comp Neurol 193:631–657

    Google Scholar 

  • Ling EA, Kaur C, Wong WC (1982) Light and electron microscopic demonstration of non-specific esterase in amoeboid microglial cells in the corpus callosum in postnatal rats: a cytochemical link to monocytes. J Anat 135:385–394

    PubMed  CAS  Google Scholar 

  • Ling EA, Kaur C, Yick TY, Wong WC (1990) Immunocytochemical localization of CR3 complement receptors with OX-42 in amoeboid microglia in postnatal rats. Anat Embryol 182:481–486

    PubMed  CAS  Google Scholar 

  • Ling EA, Kaur C, Wong WC (1991) Expression of major histocompatibility complex and leukocyte common antigens in amoeboid microglia in postnatal rats. J Anat 177:117–126

    PubMed  CAS  Google Scholar 

  • Logan A, Gonzalez AM, Hill DJ, Berry M, Gregson NA, Baird A (1994) Coordinated pattern of expression and localization of insulin-like growth factor-II (IGF-II) and IGF-binding protein-2 in the adult rat brain. Endocrinology 135:2255–2264

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Figueroa MO, Day HE, Lee S, Rivier C, Akil H, Watson SJ (2000) Temporal and anatomical distribution of nitric oxide synthase mRNA expression and nitric oxide production during central nervous system inflammation. Brain Res 852:239–246

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL, North R, Gerard C, Rollins BJ (1998) Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 187:601–608

    Article  PubMed  CAS  Google Scholar 

  • Mallard EC, Rees S, Stringer M, Cock ML, Harding R (1998) Effects of chronic placental insufficiency on brain development in fetal sheep. Pediatr Res 43:262–270

    Article  PubMed  CAS  Google Scholar 

  • Matute C, Alberdi E, Domercq M, Sanchez-Gomez MV, Perez-Samartin A, Rodriguez-Antiguedad A, Perez-Cerda F (2007) Excitotoxic damage to white matter. J Anat 210:693–702

    Article  PubMed  CAS  Google Scholar 

  • McDonald JW, Althomsons SP, Hyrc KL, Choi DW, Goldberg MP (1998) Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat Med 4:291–7

    Article  PubMed  CAS  Google Scholar 

  • McQuillen PS, Ferriero DM (2004) Selective vulnerability in the developing central nervous system. Pediatr Neurol 30:227–235

    Article  PubMed  Google Scholar 

  • Meng SZ, Arai Y, Deguchi K, Takashima S (1997) Early detection of axonal and neuronal lesions in prenatal-onset periventricular leukomalacia. Brain Dev 19:480–484

    Article  PubMed  CAS  Google Scholar 

  • Merrill JE, Ignarro LJ, Sherman MP, Melinek J, Lane TE (1993) Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol 151:2132–2141

    PubMed  CAS  Google Scholar 

  • Murphy S, Simmons ML, Agullo L, Garcia A, Feinstein DL, Galea E, Reis DJ, Minc-Golomb D, Schwartz JP (1993) Synthesis of nitric oxide in CNS glial cells. Trends Neurosci 16:323–8

    Article  PubMed  CAS  Google Scholar 

  • Murphy GM Jr, Zhao F, Yang L, Cordell B (2000) Expression of macrophage colony-stimulating factor receptor is increased in the AβPP(V717F) transgenic mouse model of Alzheimer’s disease. Am J Pathol 157:895–904

    Article  PubMed  CAS  Google Scholar 

  • Murugan M, Sivakumar V, Lu J, Ling EA, Kaur C (2011) Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-ĸB signalling pathway and oligodendrocyte cell death in hypoxic postnatal rats. Glia 59:521–539

    Article  PubMed  Google Scholar 

  • Nakanishi H (2003) Microglial functions and proteases. Mol Neurobiol 27:163–176

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T, She H et al (2006) Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 26:12633–12641

    Article  PubMed  CAS  Google Scholar 

  • Ness JK, Romanko MJ, Rothstein RP, Wood TL, Levison SW (2001) Perinatal hypoxia-ischemia induces apoptotic and excitotoxic death of periventricular white matter oligodendrocyte progenitors. Dev Neurosci 23:203–208

    Article  PubMed  CAS  Google Scholar 

  • Newman SL, Musson RA, Henson PM (1980) Development of functional complement receptors during in vitro maturation of human monocytes into macrophages. J Immunol 125:2236–2244

    PubMed  CAS  Google Scholar 

  • Nissl F (1899) Ueber einige Beziehungen zwischen Nervenzellerkrankungen und glio¨sen Erscheinungen bei verschiedenen Pschosen. Arch Psych 32:1–21

    Article  Google Scholar 

  • Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Alves Ferreira T, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458

    Article  PubMed  CAS  Google Scholar 

  • Perlman JM (2006) Intervention strategies for neonatal hypoxic-ischemic cerebral injury. Clin Ther 28:1353–1365

    Article  PubMed  CAS  Google Scholar 

  • Perry VH, Hume DA, Gordon S (1985) Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15:313–26

    Article  PubMed  CAS  Google Scholar 

  • Provis JM, Leech J, Diaz CM, Penfold PL, Stone J, Keshet E (1997) Development of the human retinal vasculature: cellular relations and VEGF expression. Exp Eye Res 65:555–68

    Article  PubMed  CAS  Google Scholar 

  • Rankine EL, Hughes PM, Botham MS, Perry VH, Felton LM (2006) Brain cytokine synthesis induced by an intraparenchymal injection of LPS is reduced in MCP-1-deficient mice prior to leucocyte recruitment. Eur J Neurosci 24:77–86

    Article  PubMed  CAS  Google Scholar 

  • Rathnasamy G, Ling EA, Kaur C (2011) Iron and iron regulatory proteins in amoeboid microglial cells are linked to oligodendrocyte death in hypoxic neonatal rat periventricular white matter through production of proinflammatory cytokines and reactive oxygen/nitrogen species. J Neurosci 31:17982–95

    Article  PubMed  CAS  Google Scholar 

  • Rymo SF, Gerhardt H, Wolfhagen Sand F, Lang R, Uv A, Betsholtz C (2011) A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS One 6:e15846

    Article  PubMed  CAS  Google Scholar 

  • Salter MG, Fern R (2005) NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438:1167–1171

    Article  PubMed  CAS  Google Scholar 

  • Santos AM, Calvente R, Tassi M, Carrasco MC, Martín-Oliva D, Marín-Teva JL et al (2008) Embryonic and postnatal development of microglial cells in the mouse retina. J Comp Neurol 506:224–239

    Article  PubMed  Google Scholar 

  • Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC, Himes SR, Hume DA (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–63

    Article  PubMed  CAS  Google Scholar 

  • Sawada M, Suzumura A, Yamamoto H, Marunouchi T (1990) Activation and proliferation of the isolated microglia by colony stimulating factor-1 and possible involvement of protein kinase C. Brain Res 509:119–24

    Article  PubMed  CAS  Google Scholar 

  • Sawada M, Itoh Y, Suzumura A, Marunouchi T (1993) Expression of cytokine receptors in cultured neuronal and glial cells. Neurosci Lett 160:131–4

    Article  PubMed  CAS  Google Scholar 

  • Schafer DP, Lehrman EK, Kautzman AG, Barres B, Stevens B (2010) Synaptic pruning in the CNS: the role of microglia and the complement system. Soc Neurosci Abstr 36:554.5

    Google Scholar 

  • Shafit-Zagardo B, Sharma N, Berman JW, Bornstein MB, Brosnan CF (1993) CSF-1 expression is upregulated in astrocyte cultures by IL-1 and TNF and affects microglial proliferation and morphology in organotypic cultures. Int J Dev Neurosci 11:189–98

    Article  PubMed  CAS  Google Scholar 

  • Sivakumar V, Ling EA, Lu J, Kaur C (2010) Role of glutamate and its receptors and insulin-like growth factors in hypoxia induced periventricular white matter injury. Glia 58:507–523

    Article  PubMed  Google Scholar 

  • Sivakumar V, Foulds WS, Luu CD, Ling EA, Kaur C (2011) Retinal ganglion cell death is induced by microglia derived proinflammatory cytokines in the hypoxic neonatal retina. J Path 224:245–260

    Article  PubMed  CAS  Google Scholar 

  • Skoff RP, Bessert DA, Barks JD, Song D, Cerghet M, Silverstein FS (2001) Hypoxic-ischemic injury results in acute disruption of myelin gene expression and death of oligodendroglial precursors in neonatal mice. Int J Dev Neurosci 19:197–208

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ (2001) Microglia and macrophages in the developing CNS. Neurotoxicology 22:619–624

    Article  PubMed  CAS  Google Scholar 

  • Suzumura A, Sawada M, Yamamoto H, Marunouchi T (1990) Effects of colony stimulating factors on isolated microglia in vitro. J Neuroimmunol 30:111–20

    Article  PubMed  CAS  Google Scholar 

  • Takashima S, Iida K, Deguchi K (1995) Periventricular leukomalacia, glial development and myelination. Early Hum Dev 43:177–184

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi A, Miyaishi O, Kiuchi K, Isobe K (2001) Macrophage colony-stimulating factor is expressed in neuron and microglia after focal brain injury. J Neurosci Res 65:38–44

    Article  PubMed  CAS  Google Scholar 

  • Tekkök SB, Goldberg MP (2001) Ampa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J Neurosci 21:4237–4248

    PubMed  Google Scholar 

  • Tkachuk M, Gisler RH (1997) The promoter of macrophage colony-stimulating factor receptor is active in astrocytes. Neurosci Lett 225:121–125

    Article  PubMed  CAS  Google Scholar 

  • Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527

    Article  PubMed  CAS  Google Scholar 

  • van der Goes A, Brouwer J, Hoekstra K, Roos D, van den Berg TK, Dijkstra CD (1998) Reactive oxygen species are required for the phagocytosis of myelin by macrophages. J Neuroimmunol 92(1–2):67–75

    Article  PubMed  Google Scholar 

  • Vela JM, Molina-Holgado E, Arévalo-Martin A, Almazán G, Guaza C (2002) Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells. Mol Cell Neurosci 20:489–502

    Article  PubMed  CAS  Google Scholar 

  • Volpe JJ (2003) Cerebral white matter injury of the premature infant—more common than you think. Pediatrics 112:176–180

    Article  PubMed  Google Scholar 

  • Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  PubMed  CAS  Google Scholar 

  • Walter HJ, Berry M, Hill DJ, Cwyfan-Hughes S, Holly JM, Logan A (1999) Distinct sites of insulin-like growth factor (IGF)-II expression and localization in lesioned rat brain: possible roles of IGF binding proteins (IGFBPs) in the mediation of IGF-II activity. Endocrinology 140:520–532

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Wen CY, Shieh JY, Ling EA (1994) Down-regulation of membrane glycoprotein in amoeboid microglia transforming into ramified microglia in postnatal rat brain. J Neurocytol 23:258–269

    Article  PubMed  CAS  Google Scholar 

  • Wu CY, Kaur C, Sivakumar V, Lu J, Ling EA (2009) Kv1.1 expression in microglia regulates production and release of proinflammatory cytokines, endothelins and nitric oxide. Neuroscience 158:1500–1508

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Ling EA (1994a) Upregulation and induction of surface antigens with special reference to MHC class II expression in microglia in postnatal rat brain following intravenous or intraperitoneal injections of lipopolysaccharide. J Anat 184:285–296

    PubMed  CAS  Google Scholar 

  • Xu J, Ling EA (1994b) Studies of the ultrastructure and permeability of the blood–brain barrier in the developing corpus callosum in postnatal rat brain using electron dense tracers. J Anat 184:227–237

    PubMed  Google Scholar 

  • Xu J, Kaur C, Ling EA (1993) Variation with age in the labelling of amoeboid microglial cells in rats following intraperitoneal or intravenous injection of a fluorescent dye. J Anat 182:55–63

    PubMed  Google Scholar 

  • Yan YP, Sailor KA, Lang BT, Park SW, Vemuganti R, Dempsey RJ (2007) Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab 27:1213–1224

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka A, Hardy M, Younkin DP, Grinspan JB, Stern JL, Pleasure D (1995) Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors mediate excitotoxicity in the oligodendroglial lineage. J Neurochem 64:2442–8

    Article  PubMed  CAS  Google Scholar 

  • You Y, Kaur C (2000) Expression of induced nitric oxide synthase in amoeboid microglia in postnatal rats following an exposure to hypoxia. Neurosci Lett 279:101–104

    Article  PubMed  CAS  Google Scholar 

  • Zhu P, Hata R, Cao F, Gu F, Hanakawa Y, Hashimoto K, Sakanaka M (2008) Ramified microglial cells promote astrogliogenesis and maintenance of neural stem cells through activation of Stat3 function. FASEB J 22:3866–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a research grant (R181-000-120-213) from National Medical Research Council of Singapore. We thank Dr. Viswanathan Sivakumar for providing the technical assistance. There is no conflict of interest among the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charanjit Kaur or Eng-Ang Ling.

Additional information

Charanjit Kaur and Eng-Ang Ling contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, C., Rathnasamy, G. & Ling, EA. Roles of Activated Microglia in Hypoxia Induced Neuroinflammation in the Developing Brain and the Retina. J Neuroimmune Pharmacol 8, 66–78 (2013). https://doi.org/10.1007/s11481-012-9347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-012-9347-2

Keywords

Navigation