Skip to main content
Log in

Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

Given a row-stochastic matrix describing pairwise similarities between data objects, spectral clustering makes use of the eigenvectors of this matrix to perform dimensionality reduction for clustering in fewer dimensions. One example from this class of algorithms is the Robust Perron Cluster Analysis (PCCA+), which delivers a fuzzy clustering. Originally developed for clustering the state space of Markov chains, the method became popular as a versatile tool for general data classification problems. The robustness of PCCA+, however, cannot be explained by previous perturbation results, because the matrices in typical applications do not comply with the two main requirements: reversibility and nearly decomposability. We therefore demonstrate in this paper that PCCA+ always delivers an optimal fuzzy clustering for nearly uncoupled, not necessarily reversible, Markov chains with transition states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The Perron eigenvalue is the unique largest real eigenvalue of a real square matrix with positive entries.

  2. Unfortunately, the statement that \(R_i\) equals zero as given in Deuflhard and Weber (2005) turned out to be wrong, see Kube and Deuflhard (2006). Nevertheless, the result explains the robustness of the eigenvectors under perturbations.

  3. http://www.gnu.org/software/glpk.

  4. http://www.zib.de/de/numerik/software/newtonlib.html.

References

  • Bapat RB, Rhagavan TES (1997) Nonnegative matrices and applications. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15:1373–1396

    Article  MATH  Google Scholar 

  • Bezdek JC, Ehrlich R, Full W (1984) The fuzzy c-means clustering algorithm. Comput Geosci 10(2–3): 191–203

    Google Scholar 

  • Bowman GR (2012) Coarse-grained Markov chains capture molecular thermodynamics and kinetics in no uncertain terms. arxiv.org/abs/1201.3867

  • Bowman GR, Beauchamp KA, Boxer G, Pande VS (2009) Progress and challenges in the automated construction of Markov state models for full protein systems. J Chem Phys 131(12):124101

    Article  Google Scholar 

  • Brémaud P (1999) Markov Chains: Gibbs Fields, Monte Carlo simulation, and Queues. Number 31 in texts in applied mathematics. Springer, New York

    Google Scholar 

  • Chodera JD, Singhal N, Swope WC, Pande VS, Dill KA (2007) Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J Chem Phys 126(155101)

  • Coifman RR, Lafon S (2006) Diffusion maps. Appl Comput Harmon Anal 21:5–30

    Article  MathSciNet  MATH  Google Scholar 

  • Courtois PJ (1977) Decomposability: Queueing and computer system applications. Academic Press, Orlando

    MATH  Google Scholar 

  • Dellnitz M, Junge O (1999) On the approximation of complicated dynamical behavior. SIAM J Numer Anal 36(2):491–515

    Article  MathSciNet  Google Scholar 

  • Deuflhard P (2003) From molecular dynamics to conformational dynamics in drug design. In: Kirkilionis M, Krömker S, Rannacher R, Tomi F (eds) Trends in nonlinear analysis. Springer, Berlin, pp 269–287

    Chapter  Google Scholar 

  • Deuflhard P, Weber M (2005) Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl 398:161–184

    Article  MathSciNet  MATH  Google Scholar 

  • Deuflhard P, Huisinga W, Fischer A, Schütte Ch (2000) Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains. Linear Algebra Appl 315:39–59

    Google Scholar 

  • Fackeldey K, Bujotzek A, Weber M (2013) A meshless discretization method for Markov state models applied to explicit water peptide folding simulations. In: Griebel M, Schweitzer MA (eds) Meshfree methods for partial differential equations VI, volume 89 of Lecture Notes in Computational Science and Engineering. Springer, Berlin, pp 141–154

  • Fischer B, Buhmann JM (2002) Data resampling for path based clustering. In: Proceedings of the 24th DAGM symposium on pattern regognition, volume 2449 of Lecture Notes in Computer Science. Springer, London, pp 206–214

  • Fischer I, Poland J (2005) Amplifying the block matrix structure for spectral clustering. In: van Otterlo M, Poel M, Nijholt A (eds) Proceedings of the 14th annual machine learning conference of Belgium and the Netherlands, pp 21–28

  • Fischer B, Zöller T, Buhmann J (2001) Path based pairwise data clustering with application to texture segmentation. In: Energy minimization methods in computer vision and pattern recognition, volume 2134 of Lecture Notes in Computer Science. Springer, Berlin, pp 235–250

  • Frenkel D, Smit B (2002) Understanding molecular simulation: from Algorithms to applications, volume 1 of computational science series. Academic Press, London

    Google Scholar 

  • Halgren T, Nachbar B (1996) Merck molecular force field. IV. Conformational energies and geometries for MMFF94. J Comput Chem 17(5–6):587–615

    Google Scholar 

  • Jimenez R (2008) Fuzzy spectral clustering for identification of rock discontinuity sets. Rock Mech Rock Eng 41:929–939

    Article  Google Scholar 

  • Kannan R, Vempala S, Vetter A (2004) On clustering: good, bad and spectral. J ACM 51:497–515

    Article  MathSciNet  MATH  Google Scholar 

  • Kato T (1984) Perturbation theory for linear operators. Springer, Berlin

    MATH  Google Scholar 

  • Kijima M (1997) Markov processes for stochastic modeling. Chapman and Hall, Stochastic Modeling Series

  • Korenblum D, Shalloway D (2003) Macrostate data clustering. Phys Rev E 67:056704

    Article  Google Scholar 

  • Kube S, Deuflhard P (2006) Errata on ”Robust Perron Cluster Analysis in Conformation Dynamics”. December. http://www.zib.de/susanna.roeblitz

  • Kube S, Weber M (2006) Coarse grained molecular kinetics. ZIB-Report 06–35, Zuse Institute Berlin

  • Kube S, Weber M (2007) A coarse graining method for the identification of transition rates between molecular conformations. J Chem Phys 126(2)

  • Lehoucq RB, Sorensen DC (1996) Deflation techniques for an implicitly re-started Arnoldi iteration. SIAM J Matrix Anal Appl 17(4):789–821

    Article  MathSciNet  MATH  Google Scholar 

  • Metzner P, Weber M, Schütte C (2010) Observation uncertainty in reversible Markov chains. Phys Rev E Stat Nonlinear Soft Matter Phys 82:031114

    Article  Google Scholar 

  • Meyer CD (1989) Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Rev 31(2):240–272

    Article  MathSciNet  MATH  Google Scholar 

  • Nadler B, Lafon S, Coifman RR, Kevrekidis IG (2005) Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators. In: Advances in neural information processing systems, vol. 18. MIT Press, Cambridge, pp 955–962

  • Nadler B, Lafon S, Coifman RR, Kevrekidis IG (2006) Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Appl Comput Harmon Anal 21(1):113–127

    Google Scholar 

  • Ng A, Jordan M, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems, vol 14. MIT Press, Cambridge, pp 849–856

    Google Scholar 

  • Prinz J-H, Wu H, Sarich M, Keller B, Fischbach M, Held M, Chodera JD, Schütte Ch, Noé F (2011) Markov models of molecular kinetics: Generation and validation. J Chem Phys 134:174105

    Article  Google Scholar 

  • Röblitz S (2008) Statistical error estimation and grid-free hierarchical refinement in conformation dynamics. Doctoral thesis, Department of Mathematics and Computer Science, Freie Universität Berlin. http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000008079

  • Röblitz S, Weber M (2009) Fuzzy spectral clustering by PCCA+. In: Mucha H-J, Ritter G (eds) Classification and clustering: models, software and applications, number 26 in WIAS Report, Berlin. WIAS Berlin, WIAS Berlin, pp 73–79

  • Sarich M, Noé F, Schütte Ch (2010) On the approximation quality of Markov state models. Multiscale Model Simul 8(4):1154–1177

    Article  MathSciNet  MATH  Google Scholar 

  • Schütte Ch (1999) Conformational dynamics: modelling, theory, algorithms, and application to biomolecules. Habilitation thesis, Department of Mathematics and Computer Science, Freie Universität Berlin

  • Shi J, Malik J (2000) Normalized cuts and image segmentation. IEE Trans Pattern Anal Mach Intell 22(8):888–905

    Google Scholar 

  • Sleijpen GLG, van der Vorst HA (1996) A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J Matrix Anal Appl 17(2):401–425

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart GW (1984) On the structure of nearly uncoupled Markov chains. In: Iazeolla G, Courtois PJ, Hordijk A (eds) Mathematical computer performance and reliability. Elsevier, New York, pp 287–302

    Google Scholar 

  • Stewart GW, Ji-guang Sun (1990) Matrix perturbation theory. Computer science and scientific computing. Academic Press, Boston

    Google Scholar 

  • von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17:395–416

    Article  MathSciNet  Google Scholar 

  • Weber M (2003) Improved Perron cluster analysis. ZIB-Report 03–04, Zuse Institute Berlin (ZIB)

  • Weber M (2006) Meshless methods in conformation dynamics. Doctoral thesis, Department of Mathematics and Computer Science, Freie Universität Berlin. Verlag Dr. Hut, München

  • Weber M (2013) Adaptive spectral clustering in molecular simulations. In: Giusti A, Ritter G, Vichi M (eds) Classification and data mining. Springer, Berlin, pp 147–154

    Chapter  Google Scholar 

  • Weber M, Galliat T (2002) Characterization of transition states in conformational dynamics using Fuzzy sets. ZIB-Report 02–12, Zuse Institute Berlin

  • Weber M, Rungsarityotin W, Schliep A (2006) An indicator for the number of clusters using a linear map to simplex structure. In: Spiliopoulou M, Kruse R, Borgelt C, Nürnberger A, Gaul W (eds) From data and information analysis to knowledge engineering, studies in classification, data analysis, and knowledge organization. Springer, Berlin, pp 103–110

    Chapter  Google Scholar 

  • White B, Shalloway D (2009) Efficient uncertainty minimization for fuzzy spectral clustering. Phys Rev E 80:056704

    Article  Google Scholar 

  • Zhao F, Liu H, Jiao L (2011) Spectral clustering with fuzzy similarity measure. Digit Signal Process 21:701–709

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Röblitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röblitz, S., Weber, M. Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification. Adv Data Anal Classif 7, 147–179 (2013). https://doi.org/10.1007/s11634-013-0134-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-013-0134-6

Keywords

Mathematics Subject Classification (2000)

Navigation