Skip to main content

Advertisement

Log in

Small molecule inhibitors targeting cyclin-dependent kinases as anticancer agents

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Cyclin-dependent kinases (CDKs) and their related pathways represent some of the most attractive targets in the development of anticancer therapeutics. Among a variety of CDK inhibitors under development, flavopiridol, UCN-01, CYC202, and BMS-387032 are undergoing clinical evaluation based on evidence of preclinical antitumor activity. Flavopiridol exerts multiple effects in tumor cells, including inhibition of multiple CDKs, transcriptional inhibition secondary to disruption of P-TEFb (CDK9/cyclin T), induction of apoptosis, and antiangiogenesis. UCN-01 was initially developed as a protein kinase C (PKC) inhibitor, but its major antitumor effects appear to be related to CDK inhibition or "inappropriate" activation of cdc2/CDK1 abrogating the G2 and S checkpoints, inhibition of PDK1/Akt, and induction of apoptosis through a PKC-independent mechanism. Significantly, combining these CDK inhibitors with either conventional cytotoxic drugs or novel agents targeting signal transduction pathways can markedly enhance antitumor activity, particularly induction of apoptosis, in various preclinical models. Such findings may serve as a basis for the introduction of novel combination regimens into clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Rudek MA, Bauer KS Jr, Lush RM III, et al.: Clinical pharmacology of flavopiridol following a 72-hour continuous infusion. Ann Pharmacother 2003, 37:1369–1374.

    Article  CAS  PubMed  Google Scholar 

  2. Aklilu M, Kindler HL, Donehower RC, et al.: Phase II study of flavopiridol in patients with advanced colorectal cancer. Ann Oncol 2003, 14:1270–1273.

    Article  CAS  PubMed  Google Scholar 

  3. Zhai S, Sausville EA, Senderowicz AM, et al.: Clinical pharmacology and pharmacogenetics of flavopiridol 1-h I.v. infusion in patients with refractory neoplasms. Anticancer Drugs 2003, 14:125–135.

    Article  CAS  PubMed  Google Scholar 

  4. Kouroukis CT, Belch A, Crump M, et al.: Flavopiridol in untreated or relapsed mantle-cell lymphoma: results of a phase II study of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2003, 21:1740–1745.

    Article  CAS  PubMed  Google Scholar 

  5. Sedlacek HH: Mechanisms of action of flavopiridol. Crit Rev Oncol Hematol 2001, 38:139–170.

    Article  CAS  PubMed  Google Scholar 

  6. Chao SH, Price DH: Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 2001, 276:31793–31799. This represents the first demonstration that flavopiridol blocks gene transcription by inhibiting CDK9/cyclin T (ie, P-TEFb).

    Article  CAS  PubMed  Google Scholar 

  7. de Azevedo WF Jr, Canduri F, da Silveira NJ: Structural basis for inhibition of cyclin-dependent kinase 9 by flavopiridol. Biochem Biophys Res Commun 2002, 293:566–571.

    Article  PubMed  Google Scholar 

  8. Lam LT, Pickeral OK, Peng AC, et al.: Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol 2001, 2:RESEARCH0041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sausville EA, Elsayed Y, Monga M, Kim G: Signal transduction-directed cancer treatments. Annu Rev Pharmacol Toxicol 2003, 43:199–231.

    Article  CAS  PubMed  Google Scholar 

  10. Decker RH, Dai Y, Grant S: The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in human leukemia cells (U937) through the mitochondrial rather than the receptormediated pathway. Cell Death Differ 2001, 8:715–724.

    Article  CAS  PubMed  Google Scholar 

  11. Kitada S, Zapata JM, Andreeff M, Reed JC: Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine downregulate antiapoptosis proteins in B-cell chronic lymphocytic leukemia. Blood 2000, 96:393–397.

    CAS  PubMed  Google Scholar 

  12. Achenbach TV, Muller R, Slater EP: Bcl-2 independence of flavopiridol-induced apoptosis: mitochondrial depolarization in the absence of cytochrome c release. J Biol Chem 2000, 275:32089–32097.

    Article  CAS  PubMed  Google Scholar 

  13. Pepper C, Thomas A, Hoy T, et al.: Flavopiridol circumvents Bcl-2 family mediated inhibition of apoptosis and drug resistance in B-cell chronic lymphocytic leukaemia. Br J Haematol 2001, 114:70–77.

    Article  CAS  PubMed  Google Scholar 

  14. Decker RH, Wang S, Dai Y, et al.: Loss of the Bcl-2 phosphorylation loop domain is required to protect human myeloid leukemia cells from flavopiridol-mediated mitochondrial damage and apoptosis. Cancer Biol Ther 2002, 1:136–144.

    Article  CAS  PubMed  Google Scholar 

  15. Gojo I, Zhang B, Fenton RG: The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and downregulation of Mcl-1. Clin Cancer Res 2002, 8:3527–3538. It was reported in this study that the antiapoptotic molecule Mcl-1 represents an important target for flavopiridol-induced apoptosis, and that flavopiridol downregulates Mcl-1 levels through inhibition of mRNA transcription. This work documents the direct relationship between flavopiridol-mediated transcriptional inhibition and cytotoxicity.

    CAS  PubMed  Google Scholar 

  16. Ma Y, Cress WD, Haura EB: Flavopiridol-induced apoptosis is mediated through up-regulation of E2F1 and repression of Mcl-1. Mol Cancer Ther 2003, 2:73–81.

    CAS  PubMed  Google Scholar 

  17. Grant S, Roberts JD: The use of cyclin-dependent kinase inhibitors alone or in combination with established cytotoxic drugs in cancer chemotherapy. Drug Resist Updates 2003, 6:15–26.

    Article  CAS  Google Scholar 

  18. Wall NR, O’Connor DS, Plescia J, et al.: Suppression of survivin phosphorylation on Thr34 by flavopiridol enhances tumor cell apoptosis. Cancer Res 2003, 63:230–235.

    CAS  PubMed  Google Scholar 

  19. Wittmann S, Bali P, Donapaty S, et al.: Flavopiridol down-regulates antiapoptotic proteins and sensitizes human breast cancer cells to epothilone B-induced apoptosis. Cancer Res 2003, 63:93–99.

    CAS  PubMed  Google Scholar 

  20. Matranga CB, Shapiro GI: Selective sensitization of transformed cells to flavopiridol-induced apoptosis following recruitment to S-phase. Cancer Res 2002, 62:1707–1717.

    CAS  PubMed  Google Scholar 

  21. Jung CP, Motwani MV, Schwartz GK: Flavopiridol increases sensitization to gemcitabine in human gastrointestinal cancer cell lines and correlates with down-regulation of ribonucleotide reductase M2 subunit. Clin Cancer Res 2001, 7:2527–2536.

    CAS  PubMed  Google Scholar 

  22. Motwani M, Sirotnak FM, She Y, et al.: Drg1, a novel target for modulating sensitivity to CPT-11 in colon cancer cells. Cancer Res 2002, 62:3950–3955.

    CAS  PubMed  Google Scholar 

  23. Li W, Fan J, Bertino JR: Selective sensitization of retinoblastoma protein-deficient sarcoma cells to doxorubicin by flavopiridol-mediated inhibition of cyclin-dependent kinase 2 kinase activity. Cancer Res 2001, 61:2579–2582.

    CAS  PubMed  Google Scholar 

  24. Karp JE, Ross DD, Yang W, et al.: Timed sequential therapy of acute leukemia with flavopiridol: in vitro model for a phase I clinical trial. Clin Cancer Res 2003, 9:307–315.

    CAS  PubMed  Google Scholar 

  25. Schwartz GK, O’Reilly E, Ilson D, et al.: Phase I study of the cyclin-dependent kinase inhibitor flavopiridol in combination with paclitaxel in patients with advanced solid tumors. J Clin Oncol 2002, 20:2157–2170.

    Article  CAS  PubMed  Google Scholar 

  26. Cartee L, Wang Z, Decker RH, et al.: The cyclin-dependent kinase inhibitor (CDKI) flavopiridol disrupts phorbol 12-myristate 13-acetate-induced differentiation and CDKI expression while enhancing apoptosis in human myeloid leukemia cells. Cancer Res 2001, 61:2583–2591.

    CAS  PubMed  Google Scholar 

  27. Rosato RR, Almenara JA, Cartee L, et al.: The cyclin-dependent kinase inhibitor flavopiridol disrupts sodium butyrateinduced p21WAF1/CIP1 expression and maturation while reciprocally potentiating apoptosis in human leukemia cells. Mol Cancer Ther 2002, 1:253–266.

    CAS  PubMed  Google Scholar 

  28. Almenara J, Rosato R, Grant S: Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia 2002, 16:1331–1343.

    Article  CAS  PubMed  Google Scholar 

  29. Cartee L, Smith R, Dai Y, et al.: Synergistic induction of apoptosis in human myeloid leukemia cells by phorbol 12-myristate 13-acetate and flavopiridol proceeds via activation of both the intrinsic and tumor necrosis factormediated extrinsic cell death pathways. Mol Pharmacol 2002, 61:1313–1321.

    Article  CAS  PubMed  Google Scholar 

  30. Kim DM, Koo SY, Jeon K, et al.: Rapid induction of apoptosis by combination of flavopiridol and tumor necrosis factor (TNF)-alpha or TNF-related apoptosis-inducing ligand in human cancer cell lines. Cancer Res 2003, 63:621–626.

    CAS  PubMed  Google Scholar 

  31. Yu C, Krystal G, Dent P, Grant S: Flavopiridol potentiates STI571-induced mitochondrial damage and apoptosis in BCR-ABL-positive human leukemia cells. Clin Cancer Res 2002, 8:2976–2984.

    CAS  PubMed  Google Scholar 

  32. Wu K, Wang C, D’Amico M, et al.: Flavopiridol and trastuzumab synergistically inhibit proliferation of breast cancer cells: association with selective cooperative inhibition of cyclin D1-dependent kinase and Akt signaling pathways. Mol Cancer Ther 2002, 1:695–706.

    CAS  PubMed  Google Scholar 

  33. Dai Y, Rahmani M, Grant S: Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NFkappaB-dependent process. Oncogene 2003, 22:7108–7122.

    Article  CAS  PubMed  Google Scholar 

  34. Senderowicz AM: Small-molecule cyclin-dependent kinase modulators. Oncogene 2003, 22:6609–6620.

    Article  CAS  PubMed  Google Scholar 

  35. Nakanishi T, Karp JE, Tan M, et al.: Quantitative analysis of breast cancer resistance protein and cellular resistance to flavopiridol in acute leukemia patients. Clin Cancer Res 2003, 9:3320–3328.

    CAS  PubMed  Google Scholar 

  36. Sausville EA, Arbuck SG, Messmann R, et al.: Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 2001, 19:2319–2333.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson LN, De Moliner E, Brown NR, et al.: Structural studies with inhibitors of the cell cycle regulatory kinase cyclin-dependent protein kinase 2. Pharmacol Ther 2002, 93:113–124.

    Article  CAS  PubMed  Google Scholar 

  38. Patel V, Lahusen T, Leethanakul C, et al.: Antitumor activity of UCN-01 in carcinomas of the head and neck is associated with altered expression of cyclin D3 and p27(KIP1). Clin Cancer Res 2002, 8:3549–3560.

    CAS  PubMed  Google Scholar 

  39. Yu Q, La Rose J, Zhang H, et al.: UCN-01 inhibits p53 up-regulation and abrogates gamma-radiation-induced G(2)-M checkpoint independently of p53 by targeting both of the checkpoint kinases, Chk2 and Chk1. Cancer Res 2002, 62:5743–5748. The authors initially identified chk1 as a critical target of UCN-01 and also elucidated the molecular mechanism underlying G2 checkpoint abrogation induced by UCN-01. In this study, it was further reported that chk2 might also be a UCN-01 target, and that inhibition of chk1 and chk2 by UCN-01 mediates S checkpoint abrogation.

    CAS  PubMed  Google Scholar 

  40. Zhao B, Bower MJ, McDevitt PJ, et al.: Structural basis for Chk1 inhibition by UCN-01. J Biol Chem 2002, 277:46609–46615.

    Article  CAS  PubMed  Google Scholar 

  41. Kohn EA, Ruth ND, Brown MK, et al.: Abrogation of the S phase DNA damage checkpoint results in S phase progression or premature mitosis depending on the concentration of 7-hydroxystaurosporine and the kinetics of Cdc25C activation. J Biol Chem 2002, 277:26553–26564.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou XY, Wang X, Hu B, et al.: An ATM-independent S-phase checkpoint response involves CHK1 pathway. Cancer Res 2002, 62:1598–1603.

    CAS  PubMed  Google Scholar 

  43. Heffernan TP, Simpson DA, Frank AR, et al.: An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol Cell Biol 2002, 22:8552–8561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sato S, Fujita N, Tsuruo T: Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine). Oncogene 2002, 21:1727–1738. This study demonstrated that UCN-01 blocked the Akt survival pathway by inhibiting PDK1, a finding that may have implications for understanding the mechanism by which UCN-01 induces apoptosis.

    Article  CAS  PubMed  Google Scholar 

  45. Komander D, Kular GS, Bain J, et al.: Structural basis for UCN-01 (7-hydroxystaurosporine) specificity and PDK1 (3-phosphoinositide-dependent protein kinase-1) inhibition. Biochem J 2003, 375:255–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilson WH, Sorbara L, Figg WD, et al.: Modulation of clinical drug resistance in a B cell lymphoma patient by the protein kinase inhibitor 7-hydroxystaurosporine: presentation of a novel therapeutic paradigm. Clin Cancer Res 2000, 6:415–421.

    CAS  PubMed  Google Scholar 

  47. Dai Y, Yu C, Singh V, et al.: Pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase/MAPK cascade interact synergistically with UCN-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells. Cancer Res 2001, 61:5106–5115. It was reported in this study that UCN-01 activated the MAP kinase pathway in human leukemia cells, and that blockade of this survival pathway dramatically potentiated cytotoxicity of UCN-01. These findings indicate that combining UCN-01 and other novel signal transduction modulators may represent a novel approach to the development of UCN-01 as an anticancer agent.

    CAS  PubMed  Google Scholar 

  48. Dai Y, Landowski TH, Rosen ST, et al.: Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and -resistant myeloma cells through an IL-6-independent mechanism. Blood 2002, 100:3333–3343.

    Article  CAS  PubMed  Google Scholar 

  49. Jia W, Yu C, Rahmani M, et al.: Synergistic antileukemic interactions between 17-AAG and UCN-01 involve interruption of RAF/MEK-and AKT-related pathways. Blood 2003, 102:1824–1832.

    Article  CAS  PubMed  Google Scholar 

  50. McClue SJ, Blake D, Clarke R, et al.: In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int J Cancer 2002, 102:463–468.

    Article  CAS  PubMed  Google Scholar 

  51. Laurence V, Faivre S, Vera K, et al.: Preliminary results of an ongoing phase I and pharmacokinetic study of CYC202, a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies [abstract]. Eur J Cancer 2002, 38:S49.

    Google Scholar 

  52. Kim KS, Kimball SD, Misra RN, et al.: Discovery of aminothiazole inhibitors of cyclin-dependent kinase 2: synthesis, X-ray crystallographic analysis, and biological activities. J Med Chem 2002, 45:3905–3927.

    Article  CAS  PubMed  Google Scholar 

  53. Shapiro G, Lewis N, Bai S, et al.: A phase I study to determine the safety and pharmacokinetics (PK) of BMS-387032 with 24-hr infusion given every three weeks in patients with metastatic refractory solid tumors [abstract]. Proc ASCO 2003, 22:799.

    Google Scholar 

  54. Hoessel R, Leclerc S, Endicott JA, et al.: Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol 1999, 1:60–67.

    Article  CAS  PubMed  Google Scholar 

  55. Davies TG, Bentley J, Arris CE, et al.: Structure-based design of a potent purine-based cyclin-dependent kinase inhibitor. Nat Struct Biol 2002, 9:745–749.

    Article  CAS  PubMed  Google Scholar 

  56. Lane ME, Yu B, Rice A, et al.: A novel cdk2-selective inhibitor, SU9516, induces apoptosis in colon carcinoma cells. Cancer Res 2001, 61:6170–6177.

    CAS  PubMed  Google Scholar 

  57. Soni R, O’Reilly T, Furet P, et al.: Selective in vivo and in vitro effects of a small molecule inhibitor of cyclin-dependent kinase 4. J Natl Cancer Inst 2001, 9:436–446.

    Article  Google Scholar 

  58. Fry DW, Bedford DC, Harvey PH, et al.: Cell cycle and biochemical effects of PD 0183812: a potent inhibitor of the cyclin D-dependent kinases CDK4 and CDK6. J Biol Chem 2001, 276:16617–16623.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, Y., Grant, S. Small molecule inhibitors targeting cyclin-dependent kinases as anticancer agents. Curr Oncol Rep 6, 123–130 (2004). https://doi.org/10.1007/s11912-004-0024-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-004-0024-3

Keywords

Navigation