Skip to main content
Log in

Focal Nature of Neurological Disorders Necessitates Isotype-Selective Histone Deacetylase (HDAC) Inhibitors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Histone deacetylase (HDAC) inhibitors represent a promising new avenue of therapeutic options for a range of neurological disorders. Within any particular neurological disorder, neuronal damage or death is not widespread; rather, particular brain regions are preferentially affected. Different disorders exhibit distinct focal pathologies. Hence, understanding the region-specific effects of HDAC inhibitors is essential for targeting appropriate brain areas and reducing toxicity in unaffected areas. The outcome of HDAC inhibition depends on several factors, including the diversity in the central nervous system expression of HDAC enzymes, selectivity of a given HDAC inhibitor for different HDAC enzymes, and the presence or absence of cofactors necessary for enzyme function. This review will summarize brain regions associated with various neurological disorders and factors affecting the consequences of HDAC inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saha RN, Pahan K (2006) HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 13:539–550

    PubMed  CAS  Google Scholar 

  2. Hahnen E, Hauke J, Trankle C, Eyupoglu IY, Wirth B, Blumcke I (2008) Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin Investig Drugs 17:169–184

    PubMed  CAS  Google Scholar 

  3. Abel T, Zukin RS (2008) Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 8:57–64

    PubMed  CAS  Google Scholar 

  4. Morrison BE, Majdzadeh N, D'Mello SR (2007) Histone deacetylases: focus on the nervous system. Cell Mol Life Sci 64:2258–2269

    PubMed  CAS  Google Scholar 

  5. Marsh JL, Lukacsovich T, Thompson LM (2009) Animal models of polyglutamine diseases and therapeutic approaches. J Biol Chem 284:7431–7435

    PubMed  CAS  Google Scholar 

  6. Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7:854–868

    PubMed  CAS  Google Scholar 

  7. Graybiel AM (1995) The basal ganglia. Trends Neurosci 18:60–62

    PubMed  CAS  Google Scholar 

  8. Graybiel AM (2005) The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 15:638–644

    PubMed  CAS  Google Scholar 

  9. Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science 273:1399–1402

    PubMed  CAS  Google Scholar 

  10. Carelli RM (2002) The nucleus accumbens and reward: neurophysiological investigations in behaving animals. Behav Cogn Neurosci Rev 1:281–296

    PubMed  Google Scholar 

  11. Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468

    PubMed  CAS  Google Scholar 

  12. Squire LR (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 82:171–177

    PubMed  Google Scholar 

  13. Morris RG, Garrud P, Rawlins JN, O'Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    PubMed  CAS  Google Scholar 

  14. Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247

    PubMed  CAS  Google Scholar 

  15. HsDCR G (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72:971–983

    Google Scholar 

  16. Andrew SE et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet 4:398–403

    PubMed  CAS  Google Scholar 

  17. Li JL et al (2006) Genome-wide significance for a modifier of age at neurological onset in Huntington's disease at 6q23–24: the HD MAPS study. BMC Med Genet 7:71

    PubMed  Google Scholar 

  18. Rosenblatt A, Abbott MH, Gourley LM, Troncoso JC, Margolis RL, Brandt J, Ross CA (2003) Predictors of neuropathological severity in 100 patients with Huntington's disease. Ann Neurol 54:488–493

    PubMed  Google Scholar 

  19. Bamford KA, Caine ED, Kido DK, Plassche WM, Shoulson I (1989) Clinical–pathologic correlation in Huntington's disease: a neuropsychological and computed tomography study. Neurology 39:796–801

    PubMed  CAS  Google Scholar 

  20. Hedreen JC, Peyser CE, Folstein SE, Ross CA (1991) Neuronal loss in layers V and VI of cerebral cortex in Huntington's disease. Neurosci Lett 133:257–261

    PubMed  CAS  Google Scholar 

  21. Rosas HD et al (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620

    PubMed  CAS  Google Scholar 

  22. Fennema-Notestine C et al (2004) In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 63:989–995

    PubMed  CAS  Google Scholar 

  23. Jeste DV, Barban L, Parisi J (1984) Reduced Purkinje cell density in Huntington's disease. Exp Neurol 85:78–86

    PubMed  CAS  Google Scholar 

  24. Rodda RA (1981) Cerebellar atrophy in Huntington's disease. J Neurol Sci 50:147–157

    PubMed  CAS  Google Scholar 

  25. Byers RK, Dodge JA (1967) Huntington's chorea in children. Report of four cases. Neurology 17:587–596

    PubMed  CAS  Google Scholar 

  26. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79

    PubMed  Google Scholar 

  27. Nagafuchi S, Yanagisawa H, Ohsaki E, Shirayama T, Tadokoro K, Inoue T, Yamada M (1994) Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat Genet 8:177–182

    PubMed  CAS  Google Scholar 

  28. Koide R et al (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6:9–13

    PubMed  CAS  Google Scholar 

  29. Yazawa I, Nukina N, Hashida H, Goto J, Yamada M, Kanazawa I (1995) Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain. Nat Genet 19:99–103

    Google Scholar 

  30. Ross CA, Becher MW, Colomer V, Engelender S, Wood JD, Sharp AH (1997) Huntington's disease and dentatorubral-pallidoluysian atrophy: proteins, pathogenesis and pathology. Brain Pathol 7:1003–1016

    PubMed  CAS  Google Scholar 

  31. Takahashi H, Ohama E, Naito H, Takeda S, Nakashima S, Makifuchi T, Ikuta F (1988) Hereditary dentatorubral-pallidoluysian atrophy: clinical and pathologic variants in a family. Neurology 38:1065–1070

    PubMed  CAS  Google Scholar 

  32. Riley BE, Orr HT (2006) Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes Dev 20:2183–2192

    PubMed  CAS  Google Scholar 

  33. Duenas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain 129:1357–1370

    PubMed  Google Scholar 

  34. Campuzano V et al (1996) Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    PubMed  CAS  Google Scholar 

  35. Butler R, Bates GP (2006) Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nat Rev Neurosci 7:784–796

    PubMed  CAS  Google Scholar 

  36. Helmlinger D, Tora L, Devys D (2006) Transcriptional alterations and chromatin remodeling in polyglutamine diseases. Trends Genet 22:562–570

    PubMed  CAS  Google Scholar 

  37. Steffan JS et al (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739–743

    PubMed  CAS  Google Scholar 

  38. Ferrante RJ et al (2004) Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington's disease. J Neurosci 24:10335–10342

    PubMed  CAS  Google Scholar 

  39. Ryu H, Lee J, Hagerty SW, Soh BY, McAlpin SE, Cormier KA, Smith KM, Ferrante RJ (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Proc Natl Acad Sci U S A 103:19176–19181

    PubMed  CAS  Google Scholar 

  40. Stack EC et al (2007) Modulation of nucleosome dynamics in Huntington's disease. Hum Mol Genet 16:1164–1175

    PubMed  CAS  Google Scholar 

  41. Freiman RN, Tjian R (2002) Neurodegeneration. A glutamine-rich trail leads to transcription factors. Science 296:2149–2150

    PubMed  Google Scholar 

  42. Zhai W, Jeong H, Cui L, Krainc D, Tjian R (2005) In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets. Cell 123:1241–1253

    PubMed  CAS  Google Scholar 

  43. Benn CL, Sun T, Sadri-Vakili G, McFarland KN, DiRocco DP, Yohrling GJ, Clark TW, Bouzou B, Cha JH (2008) Huntingtin modulates transcription, occupies gene promoters in vivo, and binds directly to DNA in a polyglutamine-dependent manner. J Neurosci 28:10720–10733

    PubMed  CAS  Google Scholar 

  44. Cooper JR, Bloom FE, Roth RH (1991) Dopamine. In: Cooper JR, Bloom FE, Roth RH (eds) The biochemical basis of neuropharmacology. Oxford University Press, Oxford, pp 285–337

    Google Scholar 

  45. Stephens B et al (2005) Evidence of a breakdown of corticostriatal connections in Parkinson's disease. Neuroscience 132:741–754

    PubMed  CAS  Google Scholar 

  46. Tamminga CA (2006) The neurobiology of cognition in schizophrenia. J Clin Psychiatry 67:e11

    Article  PubMed  Google Scholar 

  47. Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184

    PubMed  CAS  Google Scholar 

  48. Feltenstein MW, See RE (2008) The neurocircuitry of addiction: an overview. Br J Pharmacol 154:261–274

    PubMed  CAS  Google Scholar 

  49. Simunovic F, et al. (2008) Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson's disease pathology. Brain. doi:10.1093/brain/awn323

  50. Mirnics K, Levitt P, Lewis DA (2006) Critical appraisal of DNA microarrays in psychiatric genomics. Biol Psychiatry 60:163–176

    PubMed  CAS  Google Scholar 

  51. Thomas EA (2006) Molecular profiling of antipsychotic drug function: convergent mechanisms in the pathology and treatment of psychiatric disorders. Mol Neurobiol 34:109–128

    PubMed  CAS  Google Scholar 

  52. Yuferov V, Nielsen D, Butelman E, Kreek MJ (2005) Microarray studies of psychostimulant-induced changes in gene expression. Addict Biol 10:101–118

    PubMed  CAS  Google Scholar 

  53. Nicholas AP et al (2008) Striatal histone modifications in models of levodopa-induced dyskinesia. J Neurochem 106:486–494

    PubMed  CAS  Google Scholar 

  54. Kumar A et al (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48:303–314

    PubMed  CAS  Google Scholar 

  55. Levine AA, Guan Z, Barco A, Xu S, Kandel ER, Schwartz JH (2005) CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum. Proc Natl Acad Sci U S A 102:19186–19191

    PubMed  CAS  Google Scholar 

  56. Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749

    PubMed  CAS  Google Scholar 

  57. Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7:710–723

    PubMed  CAS  Google Scholar 

  58. Jonsson PA, Graffmo KS, Andersen PM, Brannstrom T, Lindberg M, Oliveberg M, Marklund SL (2006) Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. Brain 129:451–464

    PubMed  Google Scholar 

  59. Monani UR (2005) Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron 48:885–896

    PubMed  CAS  Google Scholar 

  60. Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636

    PubMed  CAS  Google Scholar 

  61. Papadopoulos MC, Giffard RG, Bell BA (2000) An introduction to the changes in gene expression that occur after cerebral ischaemia. Br J Neurosurg 14:305–312

    PubMed  CAS  Google Scholar 

  62. Read SJ et al (2001) Stroke genomics: approaches to identify, validate, and understand ischemic stroke gene expression. J Cereb Blood Flow Metab 21:755–778

    PubMed  CAS  Google Scholar 

  63. Quina AS, Buschbeck M, Di Croce L (2006) Chromatin structure and epigenetics. Biochem Pharmacol 72:1563–1569

    PubMed  CAS  Google Scholar 

  64. Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294

    PubMed  CAS  Google Scholar 

  65. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    PubMed  CAS  Google Scholar 

  66. Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    PubMed  CAS  Google Scholar 

  67. An W (2007) Histone acetylation and methylation: combinatorial players for transcriptional regulation. Subcell Biochem 41:351–369

    PubMed  Google Scholar 

  68. Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541–5552

    PubMed  CAS  Google Scholar 

  69. Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435

    PubMed  CAS  Google Scholar 

  70. Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277:25748–25755

    PubMed  CAS  Google Scholar 

  71. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120

    PubMed  CAS  Google Scholar 

  72. Hildmann C, Riester D, Schwienhorst A (2007) Histone deacetylases—an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol 75:487–497

    PubMed  CAS  Google Scholar 

  73. Adcock IM, Ford P, Ito K, Barnes PJ (2006) Epigenetics and airways disease. Respir Res 7:21

    PubMed  Google Scholar 

  74. Lucio-Eterovic AK et al (2008) Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer 8:243

    PubMed  Google Scholar 

  75. Zhou X, Marks PA, Rifkind RA, Richon VM (2001) Cloning and characterization of a histone deacetylase, HDAC9. Proc Natl Acad Sci U S A 98:10572–10577

    PubMed  CAS  Google Scholar 

  76. Liu H, Hu Q, Kaufman A, D'Ercole AJ, Ye P (2008) Developmental expression of histone deacetylase 11 in the murine brain. J Neurosci Res 86:537–543

    PubMed  CAS  Google Scholar 

  77. Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ (2007) Distribution of histone deacetylases 1–11 in the rat brain. J Mol Neurosci 31:47–58

    PubMed  CAS  Google Scholar 

  78. Southwood CM, Peppi M, Dryden S, Tainsky MA, Gow A (2007) Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem Res 32:187–195

    PubMed  CAS  Google Scholar 

  79. Hoshino M et al (2003) Histone deacetylase activity is retained in primary neurons expressing mutant huntingtin protein. J Neurochem 87:257–267

    PubMed  CAS  Google Scholar 

  80. Pandey UB et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863

    PubMed  CAS  Google Scholar 

  81. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738

    PubMed  CAS  Google Scholar 

  82. Iwata A, Riley BE, Johnston JA, Kopito RR (2005) HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem 280:40282–40292

    PubMed  CAS  Google Scholar 

  83. Pallos J, Bodai L, Lukacsovich T, Purcell JM, Steffan JS, Thompson LM, Marsh JL (2008) Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum Mol Genet 17:3767–3775

    PubMed  CAS  Google Scholar 

  84. Bates EA, Victor M, Jones AK, Shi Y, Hart AC (2006) Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J Neurosci 26:2830–2838

    PubMed  CAS  Google Scholar 

  85. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    PubMed  CAS  Google Scholar 

  86. Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528

    PubMed  CAS  Google Scholar 

  87. Khan N et al (2008) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 409:581–589

    PubMed  CAS  Google Scholar 

  88. Bieliauskas AV, Pflum MK (2008) Isoform-selective histone deacetylase inhibitors. Chem Soc Rev 37:1402–1413

    PubMed  CAS  Google Scholar 

  89. Chou CJ, Herman DM, Gottesfeld JM (2008) Pimelic diphenylamide 106 is a slow, tight-binding inhibitor of class I histone deacetylases. J Biol Chem 283:35402–35409

    PubMed  CAS  Google Scholar 

  90. Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat Chem Biol 2:551–558

    PubMed  CAS  Google Scholar 

  91. Thomas EA et al (2008) The HDAC inhibitor, 4b, ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice. Proc Natl Acad Sci U S A 105:15564–15569

    PubMed  CAS  Google Scholar 

  92. Beckers T, Burkhardt C, Wieland H, Gimmnich P, Ciossek T, Maier T, Sanders K (2007) Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int J Cancer 121:1138–1148

    PubMed  CAS  Google Scholar 

  93. Hockly E et al (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci U S A 100:2041–2046

    PubMed  CAS  Google Scholar 

  94. Ferrante RJ et al (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J Neurosci 23:9418–9427

    PubMed  CAS  Google Scholar 

  95. Gardian G et al (2005) Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington's disease. J Biol Chem 280:556–563

    PubMed  CAS  Google Scholar 

  96. Hahnen E et al (2006) In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. J Neurochem 98:193–202

    PubMed  CAS  Google Scholar 

  97. Avila AM et al (2007) Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J Clin Invest 117:659–671

    PubMed  CAS  Google Scholar 

  98. Minamiyama M et al (2004) Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 13:1183–1192

    PubMed  CAS  Google Scholar 

  99. Ying M, Xu R, Wu X, Zhu H, Zhuang Y, Han M, Xu T (2006) Sodium butyrate ameliorates histone hypoacetylation and neurodegenerative phenotypes in a mouse model for DRPLA. J Biol Chem 281:12580–12586

    PubMed  CAS  Google Scholar 

  100. Rai M, Soragni E, Jenssen K, Burnett R, Herman D, Coppola G, Geschwind DH, Gottesfeld JM, Pandolfo M (2008) Correction of frataxin deficiency in a GAA repeat knock-in mouse model for Friedreich ataxia by a specific histone deacetylase inhibitor. PLoS ONE 3:e1958

    PubMed  Google Scholar 

  101. Petri S, Kiaei M, Kipiani K, Chen J, Calingasan NY, Crow JP, Beal MF (2006) Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 22:40–49

    PubMed  CAS  Google Scholar 

  102. Ryu H et al (2005) Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem 93:1087–1098

    PubMed  CAS  Google Scholar 

  103. Gardian G, Yang L, Cleren C, Calingasan NY, Klivenyi P, Beal MF (2004) Neuroprotective effects of phenylbutyrate against MPTP neurotoxicity. Neuromolecular Med 5:235–241

    PubMed  CAS  Google Scholar 

  104. Pandey SC, Ugale R, Zhang H, Tang L, Prakash A (2008) Brain chromatin remodeling: a novel mechanism of alcoholism. J Neurosci 28:3729–3737

    PubMed  CAS  Google Scholar 

  105. Romieu P, Host L, Gobaille S, Sandner G, Aunis D, Zwiller J (2008) Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats. J Neurosci 28:9342–9348

    PubMed  CAS  Google Scholar 

  106. Fontan-Lozano A, Romero-Granados R, Troncoso J, Munera A, Delgado-Garcia JM, Carrion AM (2008) Histone deacetylase inhibitors improve learning consolidation in young and in KA-induced-neurodegeneration and SAMP-8-mutant mice. Mol Cell Neurosci 39:193–201

    PubMed  CAS  Google Scholar 

  107. Thomas P, Vieta E (2008) Amisulpride plus valproate vs haloperidol plus valproate in the treatment of acute mania of bipolar I patients: a multicenter, open-label, randomized, comparative trial. Neuropsychiatr Dis Treat 4:675–686

    PubMed  CAS  Google Scholar 

  108. Buckley PF (2008) Update on the treatment and management of schizophrenia and bipolar disorder. CNS Spectr 13:1–10 quiz 11–12

    PubMed  Google Scholar 

  109. Tremolizzo L et al (2005) Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry 57:500–509

    PubMed  CAS  Google Scholar 

  110. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321:892–901

    PubMed  CAS  Google Scholar 

  111. Faraco G, Pancani T, Formentini L, Mascagni P, Fossati G, Leoni F, Moroni F, Chiarugi A (2006) Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol Pharmacol 70:1876–1884

    PubMed  CAS  Google Scholar 

  112. Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM (2004) Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 89:1358–1367

    PubMed  CAS  Google Scholar 

  113. Zhang B, West EJ, Van KC, Gurkoff GG, Zhou J, Zhang XM, Kozikowski AP, Lyeth BG (2008) HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res 1226:181–191

    PubMed  CAS  Google Scholar 

  114. Simonini MV, Camargo LM, Dong E, Maloku E, Veldic M, Costa E, Guidotti A (2006) The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc Natl Acad Sci U S A 103:1587–1592

    PubMed  CAS  Google Scholar 

  115. Van Lint C, Emiliani S, Verdin E (1996) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Exp 5:245–253

    Google Scholar 

  116. Peart MJ, Smyth GK, van Laar RK, Bowtell DD, Richon VM, Marks PA, Holloway AJ, Johnstone RW (2005) Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A 102:3697–3702

    PubMed  CAS  Google Scholar 

  117. Chiba T, Yokosuka O, Arai M, Tada M, Fukai K, Imazeki F, Kato M, Seki N, Saisho H (2004) Identification of genes up-regulated by histone deacetylase inhibition with cDNA microarray and exploration of epigenetic alterations on hepatoma cells. J Hepatol 41:436–445

    PubMed  CAS  Google Scholar 

  118. Schroeder TM, Nair AK, Staggs R, Lamblin AF, Westendorf JJ (2007) Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors. BMC Genomics 8:362

    PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to thank J. Gregor Sutcliffe for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, E.A. Focal Nature of Neurological Disorders Necessitates Isotype-Selective Histone Deacetylase (HDAC) Inhibitors. Mol Neurobiol 40, 33–45 (2009). https://doi.org/10.1007/s12035-009-8067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-009-8067-y

Keywords

Navigation