Skip to main content
Log in

Histamine Induces Upregulated Expression of Histamine Receptors and Increases Release of Inflammatory Mediators from Microglia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Histamine is a potent mediator of inflammation and a regulator of innate and adaptive immune responses. However, the influence of histamine on microglia, the resident immune cells in the brain, remains uninvestigated. In the present study, we found that microglia can constitutively express all four histamine receptors (H1R, H2R, H3R, and H4R), and the expression of H1R and H4R can be selectively upregulated in primary cultured microglia in a dose-dependent manner by histamine. Histamine can also dose-dependently stimulate microglia activation and subsequently production of proinflammatory factors tumor necrosis factor (TNF)-alpha and interleukin-6 (IL-6). The antagonists of H1R and H4R but not H2R and H3R reduced histamine-induced TNF-alpha and IL-6 production, MAPK and PI3K/AKT pathway activation, and mitochondrial membrane potential loss in microglia, suggesting that the actions of histamine are via H1R and H4R. On the other hand, inhibitors of JNK, p38, or PI3K suppressed histamine-induced TNF-alpha and IL-6 release from microglia. Histamine also activated NF-kappa B and ammonium pyrrolidinedithiocarbamate, an inhibitor of NF-kappa B, and reduced histamine-induced TNF-alpha and IL-6 release. In summary, the present study identifies the expression of histamine receptors on microglia. We also demonstrate that histamine induced TNF-alpha and IL-6 release from activated microglia via H1R and H4R-MAPK and PI3K/AKT-NF-kappa B signaling pathway, which will deepen the understanding of microglia-mediated neuroinflammatory symptoms of chronic neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Csuka E, Hans VH, Ammann E, Trentz O, Kossmann T, Morganti-Kossmann MC (2000) Cell activation and inflammatory response following traumatic axonal injury in the rat. Neuroreport 11:2587–2590

    Article  CAS  PubMed  Google Scholar 

  2. Popovich PG (2000) Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord. Prog Brain Res 128:43–58

    Article  CAS  PubMed  Google Scholar 

  3. Gao HM, Liu B, Zhang W, Hong JS (2003) Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 24:395–401

    Article  CAS  PubMed  Google Scholar 

  4. Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, Becher B, Aguzzi A (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11:146–152

    Article  CAS  PubMed  Google Scholar 

  5. Block ML, Hong JS (2005) Microglial and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  PubMed  Google Scholar 

  6. Herrera AJ, Tomas-Camardiel M, Venero JL, Cano J, Machado A (2005) Inflammatory process as a determinant factor for the degeneration of substantia nigra dopaminergic neurons. J Neural Transm 112:111–119

    Article  CAS  PubMed  Google Scholar 

  7. Parsons ME, Ganellin CR (2006) Histamine and its receptors. Br J Pharmacol 47(Suppl 1):127–135

    Google Scholar 

  8. Akdis CA, Simons FE (2006) Histamine receptors are hot in immunopharmacology. Eur J Pharmacol 533:69–76

    Article  CAS  PubMed  Google Scholar 

  9. Repka-Ramirez MS, Baraniuk JN (2002) Histamine in health and disease. Clinical Allergy and Immunology 17:1–25

    CAS  PubMed  Google Scholar 

  10. Tiligada E, Zampeli E, Sander K, Stark H (2009) Histamine H3 and H4 receptors as novel drug targets. Expert Opinion on Investigating Drugs 18:1519–1531

    Article  CAS  Google Scholar 

  11. Huang JF, Thurmond RL (2008) The new biology of histamine receptors. Current Allergy and Asthma Reports 8:21–27

    Article  CAS  PubMed  Google Scholar 

  12. Ferreira R, Santos T, Gonçalves J, Baltazar G, Ferreira L, Agasse F, Bernardino L (2012) Histamine modulates microglia function. J Neuroinflammation 9:90

    Article  PubMed Central  PubMed  Google Scholar 

  13. Gao HM, Hong JS, Zhang W, Liu B (2002) Distinct role for microglial in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 22:782–790

    CAS  PubMed  Google Scholar 

  14. Akundi RS, Candelario-Jalil E, Hess S, Hull M, Lieb K, Gebicke-Haerter PJ, Fiebich BL (2005) Signal transduction pathways regulating cyclooxygenase-2 in lipopolysaccharide-activated primary rat microglia. Glia 51:199–208

    Article  PubMed  Google Scholar 

  15. Ciallella JR, Saporito M, Lund S, Leist M, Hasseldam H, McGann N, Smith CS, Bozyczko-Coyne D, Flood DG (2005) CEP-11004, an inhibitor of the SAPK/JNK pathway, reduces TNF-alpha release from lipopolysaccharide-treated cells and mice. Eur J Pharmacol 515:179–187

    Article  CAS  PubMed  Google Scholar 

  16. Lund S, Porzgen P, Mortensen AL, Hasseldam H, Bozyczko-Coyne D, Morath S, Hartung T, Bianchi M, Ghezzi P, Bsibsi M, Dijkstra S, Leist M (2005) Inhibition of microglial inflammation by the MLK inhibitor CEP-1347. J Neurochem 92:1439–1451

    Article  CAS  PubMed  Google Scholar 

  17. Waetzig V, Czeloth K, Hidding U, Mielke K, Kanzow M, Brecht S, Goetz M, Lucius R, Herdegen T, Hanisch UK (2005) c-Jun N-ter-minal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 50:235–246

    Article  PubMed  Google Scholar 

  18. Desai P, Thurmond RL (2011) Histamine H4 receptor activation enhances LPS-induced IL-6 production in mast cells via ERK and PI3K activation. Eur J Immunol 41:1764–1773

    Article  CAS  PubMed  Google Scholar 

  19. Bonaiuto C, McDonald PP, Rossi F, Cassatella MA (1997) Activation of nuclear factor-kappa B by beta-amyloid peptides and interferon-gamma in murine microglia. J Neuroimmunol 77:51–56

    Article  CAS  PubMed  Google Scholar 

  20. Couch Y, Alvarez-Erviti L, Sibson NR, Wood MJ, Anthony DC (2011) The acute inflammatory response to intranigral alpha-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. J Neuroinflammation 8:166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Carmody RJ, Chen YH (2007) Nuclear factor-kappaB: activation and regulation during toll-like receptor signaling. Cell Mol Immunol 4:31–41

    CAS  PubMed  Google Scholar 

  22. Kim BW, Koppula S, Kim IS, Lim HW, Hong SM, Han SD, Hwang BY, Choi DK (2011) Antineuroinflammatory activity of Kamebakaurin from Isodon japonicus via inhibition of c-Jun NH-terminal kinase and p38 mitogen-activated protein kinase pathway in activated microglial cells. J Pharmacol Sci 116:296–308

    Article  CAS  PubMed  Google Scholar 

  23. Minghetti L (2005) Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 18:315–321

    Article  CAS  PubMed  Google Scholar 

  24. Russel WL, Henry DP, Phebus LA, Clemens JA (1990) Release of histamine in rat hypothalamus and corpus striatum in vivo. Brain Res 512:95–101

    Article  Google Scholar 

  25. Ikarashi Y, Yuzurihara M (2002) Experimental anxiety induced by histaminergics in mast cell-deficient and congenitally normal mice. Pharmacol Biochem Behav 72:437–441

    Article  CAS  PubMed  Google Scholar 

  26. Vizuete ML, Merino M, Venero JL, Santiago M, Cano J, Machado A (2000) Histamine infusion induces a selective dopaminergic neuronal death along with an inflammatory reaction in rat substantia nigra. J Neurochem 75:540–552

    Article  CAS  PubMed  Google Scholar 

  27. Wei J, Wu F, Sun X, Zeng X, Liang JY, Zheng HQ, Yu XB, Zhang KX, Wu ZD (2013) Differences in microglia activation between rats-derived cell and mice-derived cell after stimulating by soluble antigen of IV larva from Angiostrongylus cantonensis in vitro. Parasitol Res 112:207–214

    Article  PubMed  Google Scholar 

  28. Lee JY, Jhun BS, Oh YT, Lee JH, Choe W, Baik HH, Ha J, Yoon KS, Kim SS, Kang I (2006) Activation of adenosine A3 receptor suppresses lipopolysaccharide-induced TNF-α production through inhibition of PI3-kinase/Akt and NF-κB activation in murine BV2 microglial cells. Neurosci Lett 396:1–6

    Article  CAS  PubMed  Google Scholar 

  29. Oh YT, Lee JY, Lee J, Kim H, Yoon KS, Choe W, Kang I (2009) Oleic acid reduces lipopolysaccharide-induced expression of iNOS and COX-2 in BV2 murine microglial cells: possible involvement of reactive oxygen species, p38 MAPK, and IKK/NF-kappaB signaling pathways. Neurosci Lett 464:93–97

    Article  CAS  PubMed  Google Scholar 

  30. Jana M, Jana A, Liu X, Ghosh S, Pahan K (2007) Involvement of phosphatidylinositol 3-kinase-mediated up-regulation of IκBα in anti-inflammatory effect of gemfibrozil in microglia. J Immunol 179:4142–4152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Medina MA, Quesada AR, de Castro I, Sánchez-Jiménez F (1999) Histamine, polyamines and cancer. Biochem Pharmacol 57:1341–1344

    Article  CAS  PubMed  Google Scholar 

  32. Saligrama N, Noubade R, Case LK, del Rio R, Teuscher C (2012) Combinatorial roles for histamine H1-H2 and H3-H4 receptors in autoimmune inflammatory disease of the central nervous system. Eur J Immunol 42:1536–1546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Johnson D, Yasui D, Seeldayers P (1991) An analysis of mast cell frequency in the rodent nervous system: numbers vary between different strains and can be reconstituted in mast cell-deficient mice. J Neuropathol Exp Neurol 50:227–234

    Article  CAS  PubMed  Google Scholar 

  34. Jin Y, Silverman AJ, Vannucci SJ (2009) Mast cells are early responders after hypoxia-ischemia in immature rat brain. Stroke 40:3107–3112

    Article  CAS  PubMed  Google Scholar 

  35. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142

    Article  CAS  PubMed  Google Scholar 

  36. Feuser K, Thon KP, Bischoff SC, Lorentz A (2012) Human intestinal mast cells are a potent source of multiple chemokines. Cytokine 58:178–185

    Article  CAS  PubMed  Google Scholar 

  37. Bulanova E, Bulfone-Paus S (2010) P2 receptor-mediated signaling in mast cell biology. Purinergic Signal 6:3–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Juremalm M, Hjertson M, Olsson N, Harvima I, Nilsson K, Nilsson G (2000) The chemokine receptor CXCR4 is expressed within the mast cell lineage and its ligand stromal cell-derived factor-1alpha acts as a mast cell chemotaxin. Eur J Immunol 30:3614–3622

    Article  CAS  PubMed  Google Scholar 

  39. Skuljec J, Sun H, Pul R, Bénardais K, Ragancokova D, Moharregh-Khiabani D, Kotsiari A, Trebst C, Stangel M (2011) CCL5 induces a pro-inflammatory profile in microglia in vitro. Cell Immunol 270:164–171

    Article  CAS  PubMed  Google Scholar 

  40. Chakraborty S, Kaushik DK, Gupta M, Basu A (2010) Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res 88:1615–1631

    CAS  PubMed  Google Scholar 

  41. Wang X, Li C, Chen Y, Hao Y, Zhou W, Chen C, Yu Z (2008) Hypoxia enhances CXCR4 expression favoring microglia migration via HIF-1 activation. Biochem. Biophys Res Commun 371:283–288

    Article  CAS  Google Scholar 

  42. Zhang S, Zeng X, Yang H, Hu G, He S (2012) Mast cell tryptase induces microglia activation via protease-activated receptor 2 signaling. Cell Physiol Biochem 29:931–940

    Article  PubMed  Google Scholar 

  43. Biran V, Cochois V, Karroubi A, Arrang JM, Charriaut-Marlangue C, Heron A (2008) Stroke induces histamine accumulation and mast cell degranulation in the neonatal rat brain. Brain Pathol 18:1–9

    Article  CAS  PubMed  Google Scholar 

  44. Skaper SD, Facci L (2012) Mast cell–glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide. Phil Trans R Soc B 367:3312–3325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This project was sponsored by the grants from the National Natural Science Foundation of China (no. 81102422, 81373398), the Natural Science Foundation of Jiangsu Province (BK2010020), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of Interest

The authors declare that this article content has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoheng He or Shu Zhang.

Additional information

Hongquan Dong and Wei Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Zhang, W., Zeng, X. et al. Histamine Induces Upregulated Expression of Histamine Receptors and Increases Release of Inflammatory Mediators from Microglia. Mol Neurobiol 49, 1487–1500 (2014). https://doi.org/10.1007/s12035-014-8697-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8697-6

Keywords

Navigation