Skip to main content

Advertisement

Log in

STAT3 mutations correlated with hyper-IgE syndrome lead to blockage of IL-6/STAT3 signalling pathway

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Of all the causes identified for the disease hyper-immunoglobulinemia E syndrome (HIES), a homozygous mutation in tyrosine kinase2 (TYK2) and heterozygous mutations in STAT3 are implicated the defects in Jak/STAT signalling pathway in the pathogenesis of HIES. Mutations of STAT3 have been frequently clinically identified in autosomal-dominant (AD) HIES patients’ cells, and therefore, the genotype of STAT3 has been associated with the phenotype of HIES. Here, we conducted studies on the functional loss of the seven specific STAT3 mutations correlated with AD-HIES. Using STAT3-null human colon carcinoma cell line A4 cells, we generated seven mutants of STAT3 bearing single mutations clinically identified in AD-HIES patients’ cells and studied the functional loss of these mutants in IL-6-Jak/STAT3 signalling pathway. Our results show that five STAT3 mutants bearing mutations in the DNA-binding domain maintain the phosphorylation of Tyr705 and the ability of dimerization while the other two with mutations in SH2 domain are devoid of the phosphorylation of Try705 and abrogate the dimerization in response to IL-6. The phosphorylation of Ser727 in these mutants shows diversity in response to IL-6. These mutations eventually converge on the abnormalities of the IL-6/Gp130/Jak2-mediated STAT3 transactivation on target genes, indicative of the dysregulation of JAK/STAT signalling present in HIES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Al Khatib S, Keles S, Garcia-Lloret M, Karakoc-Aydiner E, Reisli I, Artac H, Camcioglu Y, Cokugras H, et al. 2009 Defects along the T(H)17 differentiation pathway underlie genetically distinct forms of the hyper IgE syndrome. J. Allergy Clin. Immunol. 124 342–348, 348 e341–345

    Google Scholar 

  • Avery DT, Ma CS, Bryant VL, Santner-Nanan B, Nanan R, Wong M, Fulcher DA, Cook MC and Tangye SG 2008 STAT3 is required for IL-21-induced secretion of IgE from human naive B cells. Blood 112 1784–1793

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Groner B and Muller CW 1998 Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394 145–151

    Article  PubMed  CAS  Google Scholar 

  • Buckley RH, Wray BB and Belmaker EZ 1972 Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics 49 59–70

    PubMed  CAS  Google Scholar 

  • Costa-Pereira AP, Tininini S, Strobl B, Alonzi T, Schlaak JF, Is'harc H, Gesualdo I, Newman SJ, et al. 2002 Mutational switch of an IL-6 response to an interferon-gamma-like response. Proc. Natl. Acad. Sci. USA 99 8043–8047

    Google Scholar 

  • Darnell JE, Jr. 1997 STATs and gene regulation. Science 277 1630–1635

    Article  PubMed  CAS  Google Scholar 

  • Darnell JE, Jr., Kerr IM and Stark GR 1994 Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264 1415–1421

    Article  PubMed  CAS  Google Scholar 

  • Davis SD, Schaller J and Wedgwood RJ 1966 Job's Syndrome. Recurrent, "cold", staphylococcal abscesses. Lancet 1 1013–1015

    Article  PubMed  CAS  Google Scholar 

  • Decker T and Kovarik P 2000 Serine phosphorylation of STATs. Oncogene 19 2628–2637

    Article  PubMed  CAS  Google Scholar 

  • Freeman AF and Holland SM 2010 Clinical manifestations of hyper IgE syndromes. Dis. Markers 29 123–130

    Google Scholar 

  • Freeman AF, Kleiner DE, Nadiminti H, Davis J, Quezado M, Anderson V, Puck JM and Holland SM 2007 Causes of death in hyper-IgE syndrome. J. Allergy Clin. Immunol. 119 1234–1240

  • Gerhartz C, Heesel B, Sasse J, Hemmann U, Landgraf C, Schneider-Mergener J, Horn F, Heinrich PC and Graeve L 1996 Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. I. Definition of a novel phosphotyrosine motif mediating STAT1 activation. J. Biol. Chem. 271 12991–12998

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg M, Czeko E, Muller P, Ren Z, Chen X and Darnell JE Jr 2007 Amino acid residues required for physical and cooperative transcriptional interaction of STAT3 and AP-1 proteins c-Jun and c-Fos. Mol. Cell Biol. 27 6300–6308

    Google Scholar 

  • Grimbacher B, Holland SM, Gallin JI, Greenberg F, Hill SC, Malech HL, Miller JA, O'Connell AC and Puck JM 1999a Hyper-IgE syndrome with recurrent infections--an autosomal dominant multisystem disorder. New Engl. J. Med. 340 692–702

  • Grimbacher B, Holland SM and Puck JM 2005 Hyper-IgE syndromes. Immunol. Rev. 203 244–250

    Article  PubMed  CAS  Google Scholar 

  • Grimbacher B, Schaffer AA, Holland SM, Davis J, Gallin JI, Malech HL, Atkinson TP, Belohradsky BH, et al. 1999b Genetic linkage of hyper-IgE syndrome to chromosome 4. Am. J. Hum. Genet. 65 735–744

    Article  PubMed  CAS  Google Scholar 

  • Guerois R, Nielsen JE and Serrano L 2002 Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320 369–387

    Article  PubMed  CAS  Google Scholar 

  • Happel KI, Dubin PJ, Zheng M, Ghilardi N, Lockhart C, Quinton LJ, Odden AR, Shellito JE, et al. 2005 Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J. Exp. Med. 202 761–769

    Article  PubMed  CAS  Google Scholar 

  • Heinrich PC, Behrmann I, Muller-Newen G, Schaper F and Graeve L 1998 Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334 297–314

    PubMed  CAS  Google Scholar 

  • Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, Freeman AF, Demidowich A, et al. 2007 STAT3 mutations in the hyper-IgE syndrome. New Engl. J. Med. 357 1608–1619

  • Jiao H, Toth B, Erdos M, Fransson I, Rakoczi E, Balogh I, Magyarics Z, Derfalvi B, et al. 2008 Novel and recurrent STAT3 mutations in hyper-IgE syndrome patients from different ethnic groups. Mol. Immunol. 46 202–206

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar AK, Dinger MC, Henze C, Brocke-Heidrich K and Horn F 2004 Analysis of Stat3 (signal transducer and activator of transcription 3) dimerization by fluorescence resonance energy transfer in living cells. Biochem. J. 377 289–297

    Article  PubMed  CAS  Google Scholar 

  • Liu L, McBride KM and Reich NC 2005 STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-alpha3. Proc. Natl. Acad. Sci. USA 102 8150–8155

    Google Scholar 

  • Ma CS, Chew GY, Simpson N, Priyadarshi A, Wong M, Grimbacher B, Fulcher DA, Tangye SG and Cook MC 2008 Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 205 1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Zhang T, Novotny-Diermayr V, Tan AL and Cao X 2003 A novel sequence in the coiled-coil domain of Stat3 essential for its nuclear translocation. J. Biol. Chem. 278 29252–29260

    Article  PubMed  CAS  Google Scholar 

  • Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y, Spalding C, et al. 2008 Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452 773–776

    Article  PubMed  CAS  Google Scholar 

  • Minegishi Y 2009 Hyper-IgE syndrome. Curr. Opin. Immunol. 21 487–492

    Article  PubMed  CAS  Google Scholar 

  • Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, Kawamura N, Ariga T, et al. 2007 Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448 1058–1062

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Hibi M, Nakagawa N, Nakagawa T, Yasukawa K, Yamanishi K, Taga T and Kishimoto T 1993 IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 260 1808–1810

    Article  PubMed  CAS  Google Scholar 

  • Ng PC and Henikoff S 2002 Accounting for human polymorphisms predicted to affect protein function. Genome Res. 12 436–446

    Google Scholar 

  • Papanastasiou AD, Mantagos S, Papanastasiou DA and Zarkadis IK 2010 A novel mutation in the signal transducer and activator of transcription 3 (STAT3) gene, in hyper-IgE syndrome. Mol. Immunol. 47 1629–1634

    Article  PubMed  CAS  Google Scholar 

  • Regis G, Pensa S, Boselli D, Novelli F and Poli V 2008 Ups and downs: the STAT1:STAT3 seesaw of Interferon and gp130 receptor signalling. Semin. Cell Dev. Biol. 19 351–359

    Google Scholar 

  • Renner ED, Rylaarsdam S, Anover-Sombke S, Rack AL, Reichenbach J, Carey JC, Zhu Q, Jansson AF, et al. 2008 Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J. Allergy Clin. Immunol. 122 181–187

    Google Scholar 

  • Renner ED, Torgerson TR, Rylaarsdam S, Anover-Sombke S, Golob K, LaFlam T, Zhu Q and Ochs HD 2007 STAT3 mutation in the original patient with Job's syndrome. New Engl. J. Med. 357 1667–1668

  • Schindler C and Darnell JE Jr 1995 Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem. 64 621–651

    Article  PubMed  CAS  Google Scholar 

  • Schindler C, Levy DE and Decker T 2007 JAK-STAT signaling: from interferons to cytokines. J. Biol. Chem. 282 20059–20063

    Article  PubMed  CAS  Google Scholar 

  • Schuringa JJ, Jonk LJ, Dokter WH, Vellenga E and Kruijer W 2000 Interleukin-6-induced STAT3 transactivation and Ser727 phosphorylation involves Vav, Rac-1 and the kinase SEK-1/MKK-4 as signal transduction components. Biochem. J. 347 Pt 1 89–96

    Article  PubMed  CAS  Google Scholar 

  • Schuringa JJ, Timmer H, Luttickhuizen D, Vellenga E and Kruijer W 2001 c-Jun and c-Fos cooperate with STAT3 in IL-6-induced transactivation of the IL-6 respone element (IRE). Cytokine 14 78–87

    Article  PubMed  CAS  Google Scholar 

  • Schymkowitz JW, Rousseau F, Martins IC, Ferkinghoff-Borg J, Stricher F and Serrano L 2005 Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proc. Natl. Acad. Sci. USA 102 10147–10152

    Google Scholar 

  • Seidel HM, Milocco LH, Lamb P, Darnell JE Jr, Stein RB and Rosen J 1995 Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity. Proc. Natl. Acad. Sci. USA 92 3041–3045

    Google Scholar 

  • Shuai K, Horvath CM, Huang LH, Qureshi SA, Cowburn D and Darnell JE Jr 1994 Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76 821–828

    Article  PubMed  CAS  Google Scholar 

  • Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ, Gonda TJ, Alexander WS, et al. 1997 A family of cytokine-inducible inhibitors of signalling. Nature 387 917–921

    Article  PubMed  CAS  Google Scholar 

  • Stephanou A and Latchman DS 2005 Opposing actions of STAT-1 and STAT-3. Growth Factors 23 177–182

    Article  PubMed  CAS  Google Scholar 

  • Wen Z and Darnell JE Jr 1997 Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res. 25 2062–2067

    Google Scholar 

  • Wen Z, Zhong Z and Darnell JE Jr 1995 Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82 241–250

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Huang J, Dasgupta M, Sears N, Miyagi M, Wang B, Chance MR, Chen X, et al. 2010 Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc. Natl. Acad. Sci. USA 107 21499–21504

    Google Scholar 

  • Yu H, Pardoll D and Jove R 2009 STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9 798–809

    Google Scholar 

  • Zhong Z, Wen Z and Darnell JE Jr 1994 Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264 95–98

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants NCET-08-0260 from Ministry of Education and 2009DFA30990 from Ministry of Science and Technology of the People's Republic of China; 0708WCGA149 from the Gansu Provincial Science and Technology to JY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbo Yang.

Additional information

Corresponding editor: Seyed E Hasnain

[He J, Shi J, Xu X, Zhang W, Wang Y, Chen X, Du Y, Zhu N, Zhang J, Wang Q and Yang J 2012 STAT3 mutations correlated with hyper-IgE syndrome lead to blockage of IL-6/STAT3 signalling pathway. J. Biosci. 37 1–15] DOI

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Shi, J., Xu, X. et al. STAT3 mutations correlated with hyper-IgE syndrome lead to blockage of IL-6/STAT3 signalling pathway. J Biosci 37, 243–257 (2012). https://doi.org/10.1007/s12038-012-9202-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-012-9202-x

Keywords

Navigation