Skip to main content

Advertisement

Log in

Epithelial-Mesenchymal Transition Induced by Senescent Fibroblasts

  • Review Paper
  • Published:
Cancer Microenvironment

Abstract

Depending on the cell type and tissue environment, epithelial and mesenchymal cell phenotypes are not static and can be highly dynamic. Epithelial-mesenchymal transitions (EMTs) and reverse EMTs provide flexibility during embryogenesis. While EMTs are a critical normal process during development and wound healing, properties of the EMT have been implicated in human pathology, particularly cancer metastasis. A normal undamaged epithelium does not typically exhibit features of an EMT. However, particularly under the influence of the surrounding microenvironment, cancer cells may reactivate developmental phenotypes out of context in the adult. This reactivation, such as the EMT, can facilitate tumor cell invasion and metastasis, and therefore is a major mechanism of tumor progression. Conversely, cellular senescence, which is associated with aging, is a process by which cells enter a state of permanent cell cycle arrest, thereby constituting a potent tumor suppressive mechanism. However, accumulating evidence shows that senescent cells can have deleterious effects on the tissue microenvironment. The most significant of these effects is the acquisition of a senescence-associated secretory phenotype (SASP) that turns senescent fibroblasts into pro-inflammatory cells having the ability to promote tumor progression, in part by inducing an EMT in nearby epithelial cells. Here, we summarize the potential impacts of SASP factors, particularly interleukins, on tissue microenvironments and their ability to stimulate tumor progression through induction of an EMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428

    Article  PubMed  CAS  Google Scholar 

  2. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15(2):117–134

    Article  PubMed  Google Scholar 

  3. Peinado H, Portillo F, Cano A (2004) Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol 48(5–6):365–375

    Article  PubMed  CAS  Google Scholar 

  4. Birchmeier W, Behrens J (1994) Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198(1):11–26

    PubMed  CAS  Google Scholar 

  5. Prasad CP et al (2009) Expression analysis of E-cadherin, Slug and GSK3beta in invasive ductal carcinoma of breast. BMC Cancer 9:325

    Article  PubMed  Google Scholar 

  6. Logullo AF et al (2010) Concomitant expression of epithelial-mesenchymal transition biomarkers in breast ductal carcinoma: association with progression. Oncol Rep 23(2):313–320

    PubMed  Google Scholar 

  7. Mori M et al (2009) Zyxin mediates actin fiber reorganization in epithelial-mesenchymal transition and contributes to endocardial morphogenesis. Mol Biol Cell 20(13):3115–3124

    Article  PubMed  CAS  Google Scholar 

  8. Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5(15):1597–1601

    Article  PubMed  CAS  Google Scholar 

  9. Olumi AF et al (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011

    PubMed  CAS  Google Scholar 

  10. Erez N et al (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17(2):135–147

    Article  PubMed  CAS  Google Scholar 

  11. Qiu W et al (2008) No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet 40(5):650–655

    Article  PubMed  CAS  Google Scholar 

  12. Rodier F et al (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11(8):973–979

    Article  PubMed  CAS  Google Scholar 

  13. Gilbert LA, Hemann MT (2010) DNA damage-mediated induction of a chemoresistant niche. Cell 143(3):355–366

    Article  PubMed  CAS  Google Scholar 

  14. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  PubMed  CAS  Google Scholar 

  15. d’Adda di Fagagna F et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  PubMed  Google Scholar 

  16. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nature Rev Molec Cell Biol 8:729–740

    Article  CAS  Google Scholar 

  17. Gorgoulis VG, Halazonetis TD (2010) Oncogene-induced senescence: the bright and dark side of the response. Curr Opin Cell Biol 22(6):816–827

    Article  PubMed  CAS  Google Scholar 

  18. Prieur A, Peeper DS (2008) Cellular senescence in vivo: a barrier to tumorigenesis. Curr Opin Cell Biol 20:150–155

    Article  PubMed  CAS  Google Scholar 

  19. Dimri GP (2005) What has senescence got to do with cancer? Cancer Cell 7:505–512

    Article  PubMed  CAS  Google Scholar 

  20. Coppe JP et al (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  PubMed  CAS  Google Scholar 

  21. Coppe JP et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):2853–2868

    Article  PubMed  CAS  Google Scholar 

  22. Campisi J (2005) Senescent cells, tumor suppression and organismal aging: good citizens, bad neighbors. Cell 120:513–522

    Article  PubMed  CAS  Google Scholar 

  23. Dimri GP et al (1995) A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  24. Jeyapalan JC et al (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128:36–44

    Article  PubMed  CAS  Google Scholar 

  25. Paradis V et al (2001) Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol 32:327–332

    Article  PubMed  CAS  Google Scholar 

  26. Erusalimsky JD, Kurz DJ (2005) Cellular senescence in vivo: its relevance in ageing and cardiovascular disease. Exp Gerontol 40(8–9):634–642

    Article  PubMed  CAS  Google Scholar 

  27. Martin JA, Buckwalter JA (2003) The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J Bone Joint Surg Am 85:106–110

    PubMed  Google Scholar 

  28. Roberts S et al (2006) Senescence in human intervertebral discs. Eur Spine J 15:312–316

    Article  Google Scholar 

  29. Finch CE, Crimmins EM (2004) Inflammatory exposure and historical changes in human life-spans. Science 305:1736–1739

    Article  PubMed  CAS  Google Scholar 

  30. Parrinello S et al (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118(Pt 3):485–496

    Article  PubMed  CAS  Google Scholar 

  31. Freund A et al (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16(5):238–246

    Article  PubMed  CAS  Google Scholar 

  32. Young AR, Narita M (2009) SASP reflects senescence. EMBO Rep 10(3):228–230

    Article  PubMed  CAS  Google Scholar 

  33. Krtolica A et al (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98:12072–12077

    Article  PubMed  CAS  Google Scholar 

  34. Liu D, Hornsby PJ (2007) Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res 67:3117–3126

    Article  PubMed  CAS  Google Scholar 

  35. Coppe JP et al (2010) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One 5(2):e9188

    Article  PubMed  Google Scholar 

  36. Bavik C et al (2006) The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 66:794–802

    Article  PubMed  CAS  Google Scholar 

  37. Wang B et al (2006) A growth-related oncogene/CXC chemokine receptor 2 autocrine loop contributes to cellular proliferation in esophageal cancer. Cancer Res 66:3071–3077

    Article  PubMed  CAS  Google Scholar 

  38. Tsai KK et al (2005) Cellular mechanisms for low-dose ionizing radiation-induced perturbation of the breast tissue microenvironment. Cancer Res 65:6734–6744

    Article  PubMed  CAS  Google Scholar 

  39. Ohuchida K et al (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64(9):3215–3222

    Article  PubMed  CAS  Google Scholar 

  40. Potempa S, Ridley AJ (1998) Activation of both MAP kinase and phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor/scatter factor-induced adherens junction disassembly. Mol Biol Cell 9(8):2185–2200

    PubMed  CAS  Google Scholar 

  41. Paumelle R et al (2002) Hepatocyte growth factor/scatter factor activates the ETS1 transcription factor by a RAS-RAF-MEK-ERK signaling pathway. Oncogene 21(15):2309–2319

    Article  PubMed  CAS  Google Scholar 

  42. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  PubMed  CAS  Google Scholar 

  43. Tonini T, Rossi F, Claudio PP (2003) Molecular basis of angiogenesis and cancer. Oncogene 22(42):6549–6556

    Article  PubMed  CAS  Google Scholar 

  44. Birchmeier C et al (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4(12):915–925

    Article  PubMed  CAS  Google Scholar 

  45. Yuan A et al (2005) The role of interleukin-8 in cancer cells and microenvironment interaction. Front Biosci 10:853–865

    Article  PubMed  CAS  Google Scholar 

  46. Badache A, Hynes NE (2001) Interleukin 6 inhibits proliferation and, in cooperation with an epidermal growth factor receptor autocrine loop, increases migration of T47D breast cancer cells. Cancer Res 61:383–391

    PubMed  CAS  Google Scholar 

  47. Camphausen K et al (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61(5):2207–2211

    PubMed  CAS  Google Scholar 

  48. Qian LW et al (2002) Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 8(4):1223–1227

    PubMed  CAS  Google Scholar 

  49. Coppe JP et al (2008) A role for fibroblasts in mediating the effects of tobacco-induced epithelial cell growth and invasion. Mol Cancer Res 6(7):1085–1098

    Article  PubMed  CAS  Google Scholar 

  50. Coppe JP et al (2006) Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem 281(40):29568–29574

    Article  PubMed  CAS  Google Scholar 

  51. Strieter RM et al (2006) Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer 42(6):768–778

    Article  PubMed  CAS  Google Scholar 

  52. Orr FW, Wang HH (2001) Tumor cell interactions with the microvasculature: a rate-limiting step in metastasis. Surg Oncol Clin N Am 10(2):357–381, ix-x

    PubMed  CAS  Google Scholar 

  53. Nickoloff BJ et al (2004) Tumor suppressor maspin is up-regulated during keratinocyte senescence, exerting a paracrine antiangiogenic activity. Cancer Res 64(9):2956–2961

    Article  PubMed  CAS  Google Scholar 

  54. Mantovani A (2004) Chemokines in neoplastic progression. Semin Cancer Biol 14(3):147–148

    Article  PubMed  Google Scholar 

  55. Xue W et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–650

    Article  PubMed  CAS  Google Scholar 

  56. Homey B, Muller A, Zlotnik A (2002) Chemokines: agents for the immunotherapy of cancer? Nat Rev Immunol 2(3):175–184

    Article  PubMed  CAS  Google Scholar 

  57. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4(7):540–550

    Article  PubMed  CAS  Google Scholar 

  58. Ben-Baruch A (2006) Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 16(1):38–52

    Article  PubMed  CAS  Google Scholar 

  59. Cowin P, Rowlands TM, Hatsell SJ (2005) Cadherins and catenins in breast cancer. Curr Opin Cell Biol 17:499–508

    Article  PubMed  CAS  Google Scholar 

  60. Kokkinos MI et al (2007) Vimentin and epithelial-mesenchymal transition in human breast cancer—observations in vitro and in vivo. Cells Tissues Organs 185:191–203

    Article  PubMed  CAS  Google Scholar 

  61. Dhawan P et al (2005) Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest 115:1765–1776

    Article  PubMed  CAS  Google Scholar 

  62. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  63. Bissell MJ, Radisky D (2001) Putting tumours in context. Nature Rev Cancer 1:46–54

    Article  CAS  Google Scholar 

  64. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  65. Brabletz T et al (2005) Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179(1–2):56–65

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Andrew P. Smith for editing the manuscript.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Yves Desprez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laberge, RM., Awad, P., Campisi, J. et al. Epithelial-Mesenchymal Transition Induced by Senescent Fibroblasts. Cancer Microenvironment 5, 39–44 (2012). https://doi.org/10.1007/s12307-011-0069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-011-0069-4

Keywords

Navigation