Skip to main content

Advertisement

Log in

NADPH oxidase 1-dependent ROS is crucial for TLR4 signaling to promote tumor metastasis of non-small cell lung cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Recent evidence demonstrated an enhanced metastasis of non-small cell lung cancer (NSCLC) cells induced by lipopolysaccharide (LPS) stimulation, which reflected an important role of inflammation in tumor progression. However, the underlying mechanisms still remain unclear. Here, we evaluated the potential role of reactive oxygen species (ROS) in Toll-like receptor 4 (TLR4) signaling enhanced NSCLC metastasis. NSCLC cells were isolated from clinical surgical tissues. We found that LPS stimulation of NSCLC cells facilitates their metastasis that was accompanied by increased ROS production and could be abrogated by ROS inhibition. NADPH oxidase was essential for TLR4 signaling-enhanced NSCLC metastasis. Elevated NADPH oxidase 1 (NOX1) expression by LPS stimulation was observed. Blockade of NOX1 with ML171 alleviated enhanced NSCLC metastasis by TLR4 signaling. Enforced NOX1 expression promoted TLR4 signaling-enhanced NSCLC metastasis, while decreased NOX1 expression inhibited TLR4 signaling-enhanced NSCLC metastasis. Further, NOX1 could regulate the expression of CXCR4 and matrix metallopeptidase 9 (MMP9) in NSCLC cells. NOX1 expression in tumor tissues was correlated with TLR4 expression and clinical stages in NSCLC patients. Finally, inhibition of NOX1/ROS prevented enhanced lung tumor burdens of NSCLC by LPS-induced acute lung infection. Our findings demonstrated a crucial role of NOX1-dependent ROS for TLR4 signaling to enhance the metastasis of NSCLC, which could further the understanding of NSCLC pathogenesis and helpful for developing novel therapeutics for NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kanne JP. Screening for lung cancer: what have we learned? AJR Am J Roentgenol. 2014;202:530–5.

    Article  PubMed  Google Scholar 

  2. Govindan R, Bogart J, Vokes EE. Locally advanced non-small cell lung cancer: the past, present, and future. J Thorac Oncol. 2008;3:917–28.

    Article  PubMed  Google Scholar 

  3. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61:212–36.

    Article  PubMed  Google Scholar 

  4. Li Q, Han Y, Fei G, Guo Z, Ren T, Liu Z. IL-17 promoted metastasis of non-small-cell lung cancer cells. Immunol Lett. 2012;148:144–50.

    Article  CAS  PubMed  Google Scholar 

  5. Suleiman AA, Nogova L, Fuhr U. Modeling NSCLC progression: recent advances and opportunities available. AAPS J. 2013;15:542–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dang S, Peng Y, Ye L, Wang Y, Qian Z, Chen Y, et al. Stimulation of TLR4 by LMW-HA induces metastasis in human papillary thyroid carcinoma through CXCR7. Clin Dev Immunol. 2013;2013:712561.

    PubMed  PubMed Central  Google Scholar 

  7. Zhang D, Li YH, Mi M, Jiang FL, Yue ZG, Sun Y, et al. Modified apple polysaccharides suppress the migration and invasion of colorectal cancer cells induced by lipopolysaccharide. Nutr Res. 2013;33:839–48.

    Article  PubMed  Google Scholar 

  8. Hsu RY, Chan CH, Spicer JD, Rousseau MC, Giannias B, Rousseau S, et al. LPS-induced TLR4 signaling in human colorectal cancer cells increases beta1 integrin-mediated cell adhesion and liver metastasis. Cancer Res. 2011;71:1989–98.

    Article  CAS  PubMed  Google Scholar 

  9. Liao SJ, Zhou YH, Yuan Y, Li D, Wu FH, Wang Q, et al. Triggering of Toll-like receptor 4 on metastatic breast cancer cells promotes αvβ3-mediated adhesion and invasive migration. Breast Cancer Res Treat. 2012;133:853–63.

    Article  CAS  PubMed  Google Scholar 

  10. Jing YY, Han ZP, Sun K, Zhang SS, Hou J, Liu Y, et al. Toll-like receptor 4 signaling promotes epithelial-mesenchymal transition in human hepatocellular carcinoma induced by lipopolysaccharide. BMC Med. 2012;10:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhan Z, Xie X, Cao H, Zhou X, Zhang XD, Fan H, et al. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy. 2014;10:257–68.

    Article  CAS  PubMed  Google Scholar 

  12. Li C, Li H, Jiang K, Li J, Gai X. TLR4 signaling pathway in mouse Lewis lung cancer cells promotes the expression of TGF-β1 and IL-10 and tumor cells migration. Biomed Mater Eng. 2014;24:869–75.

    CAS  PubMed  Google Scholar 

  13. Ritsick DR, Edens WA, McCoy JW, Lambeth JD. The use of model systems to study biological functions of Nox/Duox enzymes. Biochem Soc Symp. 2004;71:85–96.

    Article  CAS  Google Scholar 

  14. Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, et al. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci U S A. 2002;99:715–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chamulitrat W. Role of gp91phox homolog nox1 in induction of premalignant spindle phenotypes of HPV 16 E6/E7-immortalized human keratinocytes. Sci World J. 2010;10:1435–49.

    Article  CAS  Google Scholar 

  16. Ushio-Fukai M, Nakamura Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 2008;266:37–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coso S, Harrison I, Harrison CB, Vinh A, Sobey CG, Drummond GR, et al. NADPH oxidases as regulators of tumor angiogenesis: current and emerging concepts. Antioxid Redox Signal. 2012;16:1229–47.

    Article  CAS  PubMed  Google Scholar 

  18. Xia C, Meng Q, Liu LZ, Rojanasakul Y, Wang XR, Jiang BH. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res. 2007;67:10823–30.

    Article  CAS  PubMed  Google Scholar 

  19. Wen Z, Xu L, Chen X, Xu W, Yin Z, Gao X, et al. Autoantibody induction by DNA-containing immune complexes requires HMGB1 with the TLR2/microRNA-155 pathway. J Immunol. 2013;190:5411–22.

    Article  CAS  PubMed  Google Scholar 

  20. Yan L, Cai Q, Xu Y. The ubiquitin-CXCR4 axis plays an important role in acute lung infection-enhanced lung tumor metastasis. Clin Cancer Res. 2013;19:4706–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu HY, Li C, Yang W, Gai XD, Jia T, Lei YM, et al. FOXP3 and TLR4 protein expression are correlated in non-small cell lung cancer: implications for tumor progression and escape. Acta Histochem. 2013;115:151–7.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang YB, He FL, Fang M, Hua TF, Hu BD, Zhang ZH, et al. Increased expression of Toll-like receptors 4 and 9 in human lung cancer. Mol Biol Rep. 2009;36:1475–81.

    Article  CAS  PubMed  Google Scholar 

  23. Hattar K, Savai R, Subtil FS, Wilhelm J, Schmall A, Lang DS, et al. Endotoxin induces proliferation of NSCLC in vitro and in vivo: role of COX-2 and EGFR activation. Cancer Immunol Immunother. 2013;62:309–20.

    Article  CAS  PubMed  Google Scholar 

  24. O’Leary DP, Bhatt L, Woolley JF, Gough DR, Wang JH, Cotter TG, et al. TLR-4 signalling accelerates colon cancer cell adhesion via NF-κB mediated transcriptional up-regulation of Nox-1. PLoS One. 2012;7:e44176.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maraldi T. Natural compounds as modulators of NADPH oxidases. Oxidative Med Cell Longev. 2013;2013:271602.

    Article  Google Scholar 

  26. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.

    Article  CAS  PubMed  Google Scholar 

  27. Griffith B, Pendyala S, Hecker L, Lee PJ, Natarajan V, Thannickal VJ. NOX enzymes and pulmonary disease. Antioxid Redox Signal. 2009;11:2505–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng SE, Lee IT, Lin CC, Wu WL, Hsiao LD, Yang CM. ATP mediates NADPH oxidase/ROS generation and COX-2/PGE2 expression in A549 cells: role of P2 receptor-dependent STAT3 activation. PLoS One. 2013;8:e54125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cattaneo F, Iaccio A, Guerra G, Montagnani S, Ammendola R. NADPH-oxidase-dependent reactive oxygen species mediate EGFR transactivation by FPRL1 in WKYMVm-stimulated human lung cancer cells. Free Radic Biol Med. 2011;51:1126–36.

    Article  CAS  PubMed  Google Scholar 

  30. Kamata T. Roles of Nox1 and other Nox isoforms in cancer development. Cancer Sci. 2009;100:1382–8.

    Article  CAS  PubMed  Google Scholar 

  31. Laurent E, McCoy 3rd JW, Macina RA, Liu W, Cheng G, Robine S, et al. Nox1 is over-expressed in human colon cancers and correlates with activating mutations in K-Ras. Int J Cancer. 2008;123:100–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Komatsu D, Kato M, Nakayama J, Miyagawa S, Kamata T. NADPH oxidase 1 plays a critical mediating role in oncogenic Ras-induced vascular endothelial growth factor expression. Oncogene. 2008;27:4724–32.

    Article  CAS  PubMed  Google Scholar 

  33. Kim JS, Yeo S, Shin DG, Bae YS, Lee JJ, Chin BR, et al. Glycogen synthase kinase 3beta and beta-catenin pathway is involved in toll-like receptor 4-mediated NADPH oxidase 1 expression in macrophages. FEBS J. 2010;277:2830–7.

    Article  CAS  PubMed  Google Scholar 

  34. Shinohara M, Adachi Y, Mitsushita J, Kuwabara M, Nagasawa A, Harada S, et al. Reactive oxygen generated by NADPH oxidase 1 (Nox1) contributes to cell invasion by regulating matrix metalloprotease-9 production and cell migration. J Biol Chem. 2010;285:4481–8.

    Article  CAS  PubMed  Google Scholar 

  35. Choi YH, Burdick MD, Strieter BA, Mehrad B, Strieter RM. CXCR4, but not CXCR7, discriminates metastatic behavior in non-small cell lung cancer cells. Mol Cancer Res. 2014;12:38–47.

    Article  CAS  PubMed  Google Scholar 

  36. Pei J, Lou Y, Zhong R, Han B. MMP9 activation triggered by epidermal growth factor induced FoxO1 nuclear exclusion in non-small cell lung cancer. Tumour Biol. 2014; 35:6673–8

Download references

Acknowledgments

This work was supported by the Jilin Province Science Foundation for Youths (No. 20140520026JH) and Changchun Social Development Plan of Science and Technology (No. 3D513A343428).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youbin Cui or Yahui Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Pei, C., Yan, S. et al. NADPH oxidase 1-dependent ROS is crucial for TLR4 signaling to promote tumor metastasis of non-small cell lung cancer. Tumor Biol. 36, 1493–1502 (2015). https://doi.org/10.1007/s13277-014-2639-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2639-9

Keywords

Navigation