Skip to main content
Log in

A Comprehensive Review of Drug–Drug Interactions with Metformin

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Metformin is the world’s most commonly used oral glucose-lowering drug for type 2 diabetes, and this is mainly because it protects against diabetes-related mortality and all-cause mortality. Although it is an old drug, its mechanism of action has not yet been clarified and its pharmacokinetic pathway is still not fully understood. There is considerable inter-individual variability in the response to metformin, and this has led to many drug–drug interaction (DDI) studies of metformin. In this review, we describe both in vitro and human interaction studies of metformin both as a victim and as a perpetrator. We also clarify the importance of including pharmacodynamic end points in DDI studies of metformin and taking pharmacogenetic variation into account when performing these studies to avoid hidden pitfalls in the interpretation of DDIs with metformin. This evaluation of the literature has revealed holes in our knowledge and given clues as to where future DDI studies should be focused and performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Eddy DM, Schlessinger L, Kahn R. Clinical outcomes and cost-effectiveness of strategies for managing people at high risk for diabetes. Ann Intern Med. 2005;143:251–64.

    Article  PubMed  Google Scholar 

  2. Sussman JB, Kent DM, Nelson JP, Hayward RA. Improving diabetes prevention with benefit based tailored treatment: risk based reanalysis of Diabetes Prevention Program. BMJ. 2015;350:h454.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Madiraju AK, Erion DM, Rahimi Y, Zhang X-M, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510:542–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(Pt 3):607–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275:223–8.

    Article  CAS  PubMed  Google Scholar 

  6. Stephenne X, Foretz M, Taleux N, van der Zon GC, Sokal E, Hue L, et al. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia. 2011;54:3101–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.

  8. Wilding J. Managing patients with type 2 diabetes and obesity. Practitioner. 2015;259(25–8):3.

    Google Scholar 

  9. Hermann LS, Scherstén B, Bitzén PO, Kjellström T, Lindgärde F, Melander A. Therapeutic comparison of metformin and sulfonylurea, alone and in various combinations. A double-blind controlled study. Diabetes Care. 1994;17:1100–9.

    Article  CAS  PubMed  Google Scholar 

  10. Christensen MMH, Brasch-Andersen C, Green H, Nielsen F, Damkier P, Beck-Nielsen H, et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics. 2011;21:837–50.

    Article  CAS  PubMed  Google Scholar 

  11. Pentikäinen PJ, Neuvonen PJ, Penttilä A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur J Clin Pharmacol. 1979;16:195–202.

    Article  PubMed  Google Scholar 

  12. Becker ML, Pearson ER, Tkáč I. Pharmacogenetics of oral antidiabetic drugs. Int J Endocrinol. 2013;2013:686315.

    PubMed Central  PubMed  Google Scholar 

  13. Chen S, Zhou J, Xi M, Jia Y, Wong Y, Zhao J, et al. Pharmacogenetic variation and metformin response. Curr Drug Metab. 2013;14:1070–82.

    Article  CAS  PubMed  Google Scholar 

  14. Zolk O. Disposition of metformin: variability due to polymorphisms of organic cation transporters. Ann Med. 2012;44:119–29.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou K, Donnelly L, Yang J, Li M, Deshmukh H, Van Zuydam N, et al. Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol. 2014;2:481–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Stage TB, Damkier P, Pedersen RS, Christensen MMH, Christiansen L, Christensen K, et al. A twin study of the trough plasma steady-state concentration of metformin. Pharmacogenet Genomics. 2015;25:259–62.

    Article  CAS  PubMed  Google Scholar 

  17. Caughey GE, Roughead EE, Vitry AI, McDermott RA, Shakib S, Gilbert AL. Comorbidity in the elderly with diabetes: Identification of areas of potential treatment conflicts. Diabetes Res Clin Pract. 2010;87:385–93.

    Article  PubMed  Google Scholar 

  18. Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50:81–98.

    Article  CAS  PubMed  Google Scholar 

  19. Müller J, Lips KS, Metzner L, Neubert RHH, Koepsell H, Brandsch M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol. 2005;70:1851–60.

    Article  PubMed  Google Scholar 

  20. Staud F, Cerveny L, Ahmadimoghaddam D, Ceckova M. Multidrug and toxin extrusion proteins (MATE/SLC47); role in pharmacokinetics. Int J Biochem Cell Biol. 2013;45:2007–11.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou M, Xia L, Wang J. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos. 2007;35:1956–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wang D-S, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther. 2002;302:510–5.

    Article  CAS  PubMed  Google Scholar 

  23. Han TK, Proctor WR, Costales CL, Cai H, Everett RS, Thakker DR. Four cation-selective transporters contribute to apical uptake and accumulation of metformin in Caco-2 cell monolayers. J Pharmacol Exp Ther. 2015;352:519–28.

    Article  CAS  PubMed  Google Scholar 

  24. Proctor WR, Bourdet DL, Thakker DR. Mechanisms underlying saturable intestinal absorption of metformin. Drug Metab Dispos. 2008;36:1650–8.

    Article  CAS  PubMed  Google Scholar 

  25. Chen L, Pawlikowski B, Schlessinger A, More SS, Stryke D, Johns SJ, et al. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet. Genomics. 2010;20:687–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000;49:2063–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. König J, Zolk O, Singer K, Hoffmann C, Fromm MF. Double-transfected MDCK cells expressing human OCT1/MATE1 or OCT2/MATE1: determinants of uptake and transcellular translocation of organic cations. Br J Pharmacol. 2011;163:546–55.

    Article  PubMed Central  PubMed  Google Scholar 

  28. International Transporter Consortium, Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

    Article  Google Scholar 

  29. Committee for Human Medicinal Products. Guideline on the investigation of drug interactions. European Medicines Agency. 2012. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf. Accessed 12 April 2015.

  30. Belzer M, Morales M, Jagadish B, Mash EA, Wright SH. Substrate-dependent ligand inhibition of the human organic cation transporter OCT2. J Pharmacol Exp Ther. 2013;346:300–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zamek-Gliszczynski MJ, Kalvass JC, Pollack GM, Brouwer KLR. Relationship between drug/metabolite exposure and impairment of excretory transport function. Drug Metab Dispos. 2009;37:386–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bachmakov I, Glaeser H, Fromm MF, König J. Interaction of oral antidiabetic drugs with hepatic uptake transporters: focus on organic anion transporting polypeptides and organic cation transporter 1. Diabetes. 2008;57:1463–9.

    Article  CAS  PubMed  Google Scholar 

  33. Choi M-K, Jin Q-R, Ahn S-H, Bae M-A, Song I-S. Sitagliptin attenuates metformin-mediated AMPK phosphorylation through inhibition of organic cation transporters. Xenobiotica Fate Foreign Compd Biol Syst. 2010;40:817–25.

    Article  CAS  Google Scholar 

  34. Herman GA, Bergman A, Yi B, Kipnes M. Sitagliptin Study 012 Group. Tolerability and pharmacokinetics of metformin and the dipeptidyl peptidase-4 inhibitor sitagliptin when co-administered in patients with type 2 diabetes. Curr Med Res Opin. 2006;22:1939–47.

    Article  CAS  PubMed  Google Scholar 

  35. Umehara K-I, Iwatsubo T, Noguchi K, Usui T, Kamimura H. Effect of cationic drugs on the transporting activity of human and rat OCT/Oct 1–3 in vitro and implications for drug–drug interactions. Xenobiotica Fate Foreign Compd Biol Syst. 2008;38:1203–18.

    Article  CAS  Google Scholar 

  36. Bachmakov I, Glaeser H, Endress B, Mörl F, König J, Fromm MF. Interaction of beta-blockers with the renal uptake transporter OCT2. Diabetes Obes Metab. 2009;11:1080–3.

    Article  CAS  PubMed  Google Scholar 

  37. Li L, Song F, Tu M, Wang K, Zhao L, Wu X, et al. In vitro interaction of clopidogrel and its hydrolysate with OCT1, OCT2 and OAT1. Int J Pharm. 2014;465:5–10.

    Article  CAS  PubMed  Google Scholar 

  38. Nies AT, Hofmann U, Resch C, Schaeffeler E, Rius M, Schwab M. Proton pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs). PloS One. 2011;6:e22163.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Müller F, Pontones CA, Renner B, Mieth M, Hoier E, Auge D, et al. N(1)-methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: studies on the metformin–trimethoprim interaction. Eur J Clin Pharmacol. 2015;71:85–94.

    Article  PubMed  Google Scholar 

  40. Minematsu T, Giacomini KM. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol Cancer Ther. 2011;10:531–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kwon M, Choi YA, Choi M-K, Song I-S. Organic cation transporter-mediated drug–drug interaction potential between berberine and metformin. Arch Pharm Res. (epub 31 Oct 2014).

  42. Kido Y, Matsson P, Giacomini KM. Profiling of a prescription drug library for potential renal drug–drug interactions mediated by the organic cation transporter 2. J Med Chem. 2011;54:4548–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Takanohashi T, Koizumi T, Mihara R, Okudaira K. Prediction of the metabolic interaction of nateglinide with other drugs based on in vitro studies. Drug Metab Pharmacokinet. 2007;22:409–18.

    Article  CAS  PubMed  Google Scholar 

  44. Scheen AJ, de Magalhaes AC, Salvatore T, Lefebvre PJ. Reduction of the acute bioavailability of metformin by the alpha-glucosidase inhibitor acarbose in normal man. Eur J Clin Invest. 1994;24(Suppl 3):50–4.

    CAS  PubMed  Google Scholar 

  45. Kim S, Jang I-J, Shin D, Shin DS, Yoon S, Lim KS, et al. Investigation of bioequivalence of a new fixed-dose combination of acarbose and metformin with the corresponding loose combination as well as the drug–drug interaction potential between both drugs in healthy adult male subjects. J Clin Pharm Ther. 2014;39:424–31.

    Article  CAS  PubMed  Google Scholar 

  46. Halimi S, Le Berre MA, Grangé V. Efficacy and safety of acarbose add-on therapy in the treatment of overweight patients with type 2 diabetes inadequately controlled with metformin: a double-blind, placebo-controlled study. Diabetes Res Clin Pract. 2000;50:49–56.

    Article  CAS  PubMed  Google Scholar 

  47. Cho SK, Kim CO, Park ES, Chung J-Y. Verapamil decreases the glucose-lowering effect of metformin in healthy volunteers. Br J Clin Pharmacol. 2014;78:1426–32.

    Article  CAS  PubMed  Google Scholar 

  48. Zack J, Berg J, Juan A, Pannacciulli N, Allard M, Gottwald M, et al. Pharmacokinetic drug–drug interaction study of ranolazine and metformin in subjects with type 2 diabetes mellitus. Clin Pharmacol Drug Develop. 2015;4:121–9.

    Article  CAS  Google Scholar 

  49. Tsuda M, Terada T, Ueba M, Sato T, Masuda S, Katsura T, et al. Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J Pharmacol Exp Ther. 2009;329:185–91.

    Article  CAS  PubMed  Google Scholar 

  50. Ito S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, et al. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug–drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther. 2012;340:393–403.

    Article  CAS  PubMed  Google Scholar 

  51. Somogyi A, Stockley C, Keal J, Rolan P, Bochner F. Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol. 1987;23:545–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Wang Z-J, Yin OQP, Tomlinson B, Chow MSS. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics. 2008;18:637–45.

    Article  CAS  PubMed  Google Scholar 

  53. Seo JH, Lee DY, Hong CW, Lee IH, Ahn KS, Kang GW. Severe lactic acidosis and acute pancreatitis associated with cimetidine in a patient with type 2 diabetes mellitus taking metformin. Intern Med Tokyo Jpn. 2013;52:2245–8.

    Article  Google Scholar 

  54. Ding Y, Jia Y, Song Y, Lu C, Li Y, Chen M, et al. The effect of lansoprazole, an OCT inhibitor, on metformin pharmacokinetics in healthy subjects. Eur J Clin Pharmacol. 2014;70:141–6.

    Article  CAS  PubMed  Google Scholar 

  55. Kim A, Chung I, Yoon SH, Yu K-S, Lim KS, Cho J-Y, et al. Effects of proton pump inhibitors on metformin pharmacokinetics and pharmacodynamics. Drug Metab Dispos. 2014;42:1174–9.

    Article  PubMed  Google Scholar 

  56. Flory J, Haynes K, Leonard CE, Hennessy S. Proton pump inhibitors do not impair the effectiveness of metformin in patients with diabetes. Br J Clin Pharmacol. 2015;79:330–6.

    Article  CAS  PubMed  Google Scholar 

  57. Jayasagar G, Krishna Kumar M, Chandrasekhar K, Madhusudan Rao C, Madhusudan Rao Y. Effect of cephalexin on the pharmacokinetics of metformin in healthy human volunteers. Drug Metabol Drug Interact. 2002;19:41–8.

  58. Watanabe S, Tsuda M, Terada T, Katsura T, Inui K. Reduced renal clearance of a zwitterionic substrate cephalexin in MATE1-deficient mice. J Pharmacol Exp Ther. 2010;334:651–6.

    Article  CAS  PubMed  Google Scholar 

  59. Maeda T, Oyabu M, Yotsumoto T, Higashi R, Nagata K, Yamazoe Y, et al. Effect of pregnane X receptor ligand on pharmacokinetics of substrates of organic cation transporter OCT1 in rats. Drug Metab Dispos. 2007;35:1580–6.

    Article  CAS  PubMed  Google Scholar 

  60. Cho SK, Yoon JS, Lee MG, Lee DH, Lim LA, Park K, et al. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin Pharmacol Ther. 2011;89:416–21.

    Article  CAS  PubMed  Google Scholar 

  61. Rysä J, Buler M, Savolainen MJ, Ruskoaho H, Hakkola J, Hukkanen J. Pregnane X receptor agonists impair postprandial glucose tolerance. Clin Pharmacol Ther. 2013;93:556–63.

    Article  PubMed  Google Scholar 

  62. Grün B, Kiessling MK, Burhenne J, Riedel K-D, Weiss J, Rauch G, et al. Trimethoprim-metformin interaction and its genetic modulation by OCT2 and MATE1 transporters. Br J Clin Pharmacol. 2013;76:787–96.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Johansson S, Read J, Oliver S, Steinberg M, Li Y, Lisbon E, et al. Pharmacokinetic evaluations of the co-administrations of vandetanib and metformin, digoxin, midazolam, omeprazole or ranitidine. Clin Pharmacokinet. 2014;53:837–47.

    Article  CAS  PubMed  Google Scholar 

  64. Kusuhara H, Ito S, Kumagai Y, Jiang M, Shiroshita T, Moriyama Y, et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther. 2011;89:837–44.

    Article  CAS  PubMed  Google Scholar 

  65. Stage TB, Pedersen RS, Damkier P, Christensen MMH, Feddersen S, Larsen JT, et al. Intake of St John’s wort improves the glucose tolerance in healthy subjects that ingest metformin compared to metformin alone. Br J Clin Pharmacol. 2015;79:298–306.

    Article  CAS  PubMed  Google Scholar 

  66. Manitpisitkul P, Curtin CR, Shalayda K, Wang S-S, Ford L, Heald D. Pharmacokinetic interactions between topiramate and pioglitazone and metformin. Epilepsy Res. 2014;108:1519–32.

    Article  CAS  PubMed  Google Scholar 

  67. Zong J, Borland J, Jerva F, Wynne B, Choukour M, Song I. The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J Int AIDS Soc. (internet). 2014;17. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224846/. Accessed 11 March 2015.

  68. Baerlocher MO, Asch M, Myers A. Five things to know about … metformin and intravenous contrast. CMAJ. 2013;185:E78.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER. Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: a GoDARTS study. Diabetes. (epub 15 December 2014).

  70. Vaidyanathan S, Maboudian M, Warren V, Yeh C-M, Dieterich HA, Howard D, et al. A study of the pharmacokinetic interactions of the direct renin inhibitor aliskiren with metformin, pioglitazone and fenofibrate in healthy subjects. Curr Med Res Opin. 2008;24:2313–26.

    Article  CAS  PubMed  Google Scholar 

  71. Karim A, Covington P, Christopher R, Davenport M, Fleck P, Li X, et al. Pharmacokinetics of alogliptin when administered with food, metformin, or cimetidine: a two-phase, crossover study in healthy subjects. Int J Clin Pharmacol Ther. 2010;48:46–58.

    Article  CAS  PubMed  Google Scholar 

  72. Kasichayanula S, Liu X, Shyu WC, Zhang W, Pfister M, Griffen SC, et al. Lack of pharmacokinetic interaction between dapagliflozin, a novel sodium-glucose transporter 2 inhibitor, and metformin, pioglitazone, glimepiride or sitagliptin in healthy subjects. Diabetes Obes Metab. 2011;13:47–54.

    Article  CAS  PubMed  Google Scholar 

  73. Li J, Klemm K, O’Farrell AM, Guler H-P, Cherrington JM, Schwartz S, et al. Evaluation of the potential for pharmacokinetic and pharmacodynamic interactions between dutogliptin, a novel DPP4 inhibitor, and metformin, in type 2 diabetic patients. Curr Med Res Opin. 2010;26:2003–10.

    Article  CAS  PubMed  Google Scholar 

  74. Rocha J-F, Vaz-da-Silva M, Almeida L, Falcão A, Nunes T, Santos A-T, et al. Effect of eslicarbazepine acetate on the pharmacokinetics of metformin in healthy subjects. Int J Clin Pharmacol Ther. 2009;47:255–61.

    Article  CAS  PubMed  Google Scholar 

  75. Shin D, Cho YM, Lee S, Lim KS, Kim J-A, Ahn J-Y, et al. Pharmacokinetic and pharmacodynamic interaction between gemigliptin and metformin in healthy subjects. Clin Drug Investig. 2014;34:383–93.

    Article  CAS  PubMed  Google Scholar 

  76. Sung EYY, Moore MP, Lunt H, Doogue M, Zhang M, Begg EJ. Do thiazide diuretics alter the pharmacokinetics of metformin in patients with type 2 diabetes already established on metformin? Br J Clin Pharmacol. 2009;67:130–1.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Bittner B, McIntyre C, Jordan P, Schmidt J. Drug–drug interaction study between a novel oral ibandronate formulation and metformin. Arzneimittelforschung. 2011;61:707–13.

    CAS  PubMed  Google Scholar 

  78. Veltkamp SA, van Dijk J, Collins C, van Bruijnsvoort M, Kadokura T, Smulders RA. Combination treatment with ipragliflozin and metformin: a randomized, double-blind, placebo-controlled study in patients with type 2 diabetes mellitus. Clin Ther. 2012;34:1761–71.

    Article  CAS  PubMed  Google Scholar 

  79. Graefe-Mody EU, Padula S, Ring A, Withopf B, Dugi KA. Evaluation of the potential for steady-state pharmacokinetic and pharmacodynamic interactions between the DPP-4 inhibitor linagliptin and metformin in healthy subjects. Curr Med Res Opin. 2009;25:1963–72.

    Article  CAS  PubMed  Google Scholar 

  80. Shin D, Kim T-E, Yoon SH, Cho J-Y, Shin S-G, Jang I-J, et al. Assessment of the pharmacokinetics of co-administered metformin and lobeglitazone, a thiazolidinedione antihyperglycemic agent, in healthy subjects. Curr Med Res Opin. 2012;28:1213–20.

    Article  CAS  PubMed  Google Scholar 

  81. Zhi J, Moore R, Kanitra L, Mulligan TE. Pharmacokinetic evaluation of the possible interaction between selected concomitant medications and orlistat at steady state in healthy subjects. J Clin Pharmacol. 2002;42:1011–9.

    Article  CAS  PubMed  Google Scholar 

  82. Rao N, Chou T, Ventura D, Abramowitz W. Investigation of the pharmacokinetic and pharmacodynamic interactions between memantine and glyburide/metformin in healthy young subjects: a single-center, multiple-dose, open-label study. Clin Ther. 2005;27:1596–606.

    Article  CAS  PubMed  Google Scholar 

  83. Di Cicco RA, Allen A, Carr A, Fowles S, Jorkasky DK, Freed MI. Rosiglitazone does not alter the pharmacokinetics of metformin. J Clin Pharmacol. 2000;40:1280–5.

    PubMed  Google Scholar 

  84. Lee D, Roh H, Son H, Jang SB, Lee S, Nam SY, et al. Pharmacokinetic interaction between rosuvastatin and metformin in healthy Korean male volunteers: a randomized, open-label, 3-period, crossover, multiple-dose study. Clin Ther. 2014;36:1171–81.

    Article  CAS  PubMed  Google Scholar 

  85. Patel CG, Kornhauser D, Vachharajani N, Komoroski B, Brenner E, Handschuh del Corral M, et al. Saxagliptin, a potent, selective inhibitor of DPP-4, does not alter the pharmacokinetics of three oral antidiabetic drugs (metformin, glyburide or pioglitazone) in healthy subjects. Diabetes Obes Metab. 2011;13:604–14.

    Article  CAS  PubMed  Google Scholar 

  86. Oefelein MG, Tong W, Kerr S, Bhasi K, Patel RK, Yu D. Effect of concomitant administration of trospium chloride extended release on the steady-state pharmacokinetics of metformin in healthy adults. Clin Drug Investig. 2013;33:123–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. He Y-L, Sabo R, Picard F, Wang Y, Herron J, Ligueros-Saylan M, et al. Study of the pharmacokinetic interaction of vildagliptin and metformin in patients with type 2 diabetes. Curr Med Res Opin. 2009;25:1265–72.

    Article  CAS  PubMed  Google Scholar 

  88. Kim H-S, Oh M, Kim EJ, Song GS, Ghim J-L, Shon J-H, et al. The effect of voglibose on the pharmacokinetics of metformin in healthy Korean subjects. Int J Clin Pharmacol Ther. 2014;52:1005–11.

    Article  CAS  PubMed  Google Scholar 

  89. Torlone E, Rambotti AM, Perriello G, Botta G, Santeusanio F, Brunetti P, et al. ACE-inhibition increases hepatic and extrahepatic sensitivity to insulin in patients with type 2 (non-insulin-dependent) diabetes mellitus and arterial hypertension. Diabetologia. 1991;34:119–25.

    Article  CAS  PubMed  Google Scholar 

  90. Berglund G, Andersson O. Beta-blockers or diuretics in hypertension? A six year follow-up of blood pressure and metabolic side effects. Lancet. 1981;1:744–7.

    Article  CAS  PubMed  Google Scholar 

  91. European Medicines Agency. Rasilez: summary of product characteristics. European Medicines Agency. 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000780/WC500047010.pdf. Accessed 12 April 2015.

  92. Ohnhaus EE, Berger W, Duckert F, Oesch F. The influence of dimethylbiguanide on phenprocoumon elimination and its mode of action: a drug interaction study. Klin Wochenschr. 1983;61:851–8.

    Article  CAS  PubMed  Google Scholar 

  93. Schier JG, Hoffman RS, Nelson LS. Metformin-induced acidosis due to a warfarin adverse drug event. Ann Pharmacother. 2003;37:1145.

    Article  PubMed  Google Scholar 

  94. Hamblin TJ. Interaction between warfarin and phenformin. Lancet. 1971;2:1323.

    Article  CAS  PubMed  Google Scholar 

  95. Wijnen JCF, van de Riet IR, Lijfering WM, van der Meer FJM. Metformin use decreases the anticoagulant effect of phenprocoumon. J Thromb Haemost. 2014;12:887–90.

    Article  CAS  PubMed  Google Scholar 

  96. Wenge B, Geyer J, Bönisch H. Oxybutynin and trospium are substrates of the human organic cation transporters. Naunyn Schmiedebergs Arch Pharmacol. 2011;383:203–8.

    Article  CAS  PubMed  Google Scholar 

  97. Ahlin G, Chen L, Lazorova L, Chen Y, Ianculescu AG, Davis RL, et al. Genotype-dependent effects of inhibitors of the organic cation transporter, OCT1: predictions of metformin interactions. Pharmacogenomics J. 2011;11:400–11.

    Article  CAS  PubMed  Google Scholar 

  98. Zolk O, Solbach TF, König J, Fromm MF. Functional characterization of the human organic cation transporter 2 variant p. 270Ala>Ser. Drug Metab Dispos. 2009;37:1312–8.

    Article  CAS  PubMed  Google Scholar 

  99. European Medicines Agency. Seebri Breezhaler: summary of product characteristics. European Medicines Agency. 2012. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002430/WC500133769.pdf. Accessed 12 April 2015.

  100. Abel S, Nichols DJ, Brearley CJ, Eve MD. Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br J Clin Pharmacol. 2000;49:64–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Haenisch B, Drescher E, Thiemer L, Xin H, Giros B, Gautron S, et al. Interaction of antidepressant and antipsychotic drugs with the human organic cation transporters hOCT1, hOCT2 and hOCT3. Naunyn Schmiedebergs Arch Pharmacol. 2012;385:1017–23.

    Article  CAS  PubMed  Google Scholar 

  102. European Medicines Agency. Fampyra: summary of product characteristics. European Medicines Agency. 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002097/WC500109956.pdf. Accessed 12 April 2015.

  103. Tzvetkov MV, dos Santos Pereira JN, Meineke I, Saadatmand AR, Stingl JC, Brockmöller J. Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration. Biochem Pharmacol. 2013;86:666–78.

  104. US Food and Drug Administration. Drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. US Food and Drug Administration. 2012. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm292362.pdf. Accessed 12 April 2015.

Download references

Acknowledgments

The Danish Council for Independent Research|Medical Science provided financial support for this study (protocol number 12-126791).

Conflicts of interest

Tore Bjerregaard Stage has given paid lectures for Astellas Pharma, Orifarm, Novartis and Eisai. None of the other authors has any relevant conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tore Bjerregaard Stage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stage, T.B., Brøsen, K. & Christensen, M.M.H. A Comprehensive Review of Drug–Drug Interactions with Metformin. Clin Pharmacokinet 54, 811–824 (2015). https://doi.org/10.1007/s40262-015-0270-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0270-6

Keywords

Navigation