Elsevier

Methods in Enzymology

Volume 277, 1997, Pages 366-396
Methods in Enzymology

[19] Free R value: Cross-validation in crystallography

https://doi.org/10.1016/S0076-6879(97)77021-6Get rights and content

Publisher Summary

This chapter focuses on the free R value and other applications of cross-validation in crystallography. Powerful methods have been developed to lower the chances of misinterpreting or overinterpreting diffraction data. Some of the more important methods measure the agreement of the structure with empirical rules about protein folds, comprehensive conformational analyses, the real-space correlation coefficient, and the free R value. The protein-folding rules and conformational analyses depend on empirical knowledge of protein structure. They validate the model regardless of the fit to the diffraction data. In contrast, the real-space correlation coefficient and the free R value are entirely diffraction data based and are applicable to any macromolecule. They validate the extent to which the model explains the diffraction data. Even the best bulk solvent and multiconformer models result in free R values of around or slightly above 20% for the penicillopepsin crystal structure. A free R value of 20% is significantly higher than expected from the estimated high statistical quality of the diffraction data. Thus, it is conceivable that the present models for solvation and thermal motion are incomplete. Alternatively, the intensity data might be affected by systematic errors of unknown origin. These facts point to the need for the solution of benchmark macromolecular structures at high resolution and with accurate experimental phases.

References (63)

  • M.J. Sippl

    J. Mol. Biol.

    (1990)
  • G. Vriend

    J. Mol. Graph.

    (1990)
  • W.A. Hendrickson

    Methods Enzymol.

    (1985)
  • J.-S. Jiang et al.

    J. Mol. Biol.

    (1994)
  • F.C. Bernstein et al.

    J. Mol. Biol.

    (1977)
  • M.N.G. James et al.

    J. Mol. Biol.

    (1983)
  • G.J. Kleywegt et al.

    Structure

    (1994)
  • J. Kuriyan et al.

    J. Mol. Biol.

    (1986)
  • B.W. Matthews

    J. Mol. Biol.

    (1968)
  • P.C. Moews et al.

    J. Mol. Biol.

    (1975)
  • S.E.V. Phillips

    J. Mol. Biol.

    (1980)
  • J. Badger

    Biophys. J.

    (1993)
  • P.M. Curmi et al.

    J. Biol. Chem.

    (1992)
  • G.J. Kleywegt et al.

    Structure

    (1995)
  • B.-C. Wang

    Methods Enzymol.

    (1985)
  • C.I. Brändén et al.

    Nature (London)

    (1990)
  • R. Lüthy et al.

    Nature (London)

    (1992)
  • D. Jones et al.

    J. Comput. Aided Mol. Design

    (1993)
  • R.A. Laskowski et al.

    J. Appl. Crystallogr.

    (1993)
  • T.A. Jones et al.

    Acta Crystallogr.

    (1991)
  • A.T. Brünger

    Nature (London)

    (1992)
  • W.H. Press et al.

    Numerical Recipes

    (1986)
  • W.C. Hamilton

    Acta Crystallogr.

    (1965)
  • A.T. Brünger et al.

    Methods Enzymol.

    (1997)
  • M. Stone

    J. R. Stat. Soc. Ser. B

    (1974)
  • B. Efron
  • B. Efron

    Society for Industrial and Applied Mathematics Rev.

    (1988)
  • V. Luzzati

    Acta Crystallogr.

    (1952)
  • R.J. Read

    Acta Crystallogr.

    (1986)
  • G. Bricogne

    Acta Crystallogr.

    (1984)
  • J. Karle
  • Cited by (0)

    View full text