The iron-regulated metastasis suppressor, Ndrg-1: Identification of novel molecular targets

https://doi.org/10.1016/j.bbamcr.2008.05.016Get rights and content
Under an Elsevier user license
open archive

Abstract

A recently identified metastasis suppressor, N-myc downstream regulated gene-1 (Ndrg-1), has been shown to reduce the invasion and metastasis of breast, colon, prostate and pancreatic cancer. Among its many functions, Ndrg-1 is involved in modulating differentiation, proliferation and angiogenesis. However, knowledge of the molecular targets of Ndrg-1 is limited. The current study has focused on examining the functions of Ndrg-1 in a number of different cancer cell models including prostate, colon, lung and pancreatic cancer to elucidate the known pleiotropic nature of this protein. Furthermore, the potential gene targets of Ndrg-1 were analyzed using whole genome gene array revealing a substantial number of genes whose expression was affected by this metastasis suppressor. Significantly, Ndrg-1 up-regulated thiamine triphosphatase (Thtpa) expression in three of the four cell models. Thtpa is known to decrease the levels of the energy currency molecule, thiamine triphosphate, suggesting a potential pathway for the anti-proliferative effects of Ndrg-1. Furthermore, Ndrg-1 reduced the protein levels of cathepsin C which plays a role in invasion, indicating a potential mechanism of its anti-metastatic role in pancreatic cancer cells. These findings provide a potential link between the observed functions of Ndrg-1 and its molecular targets, further demonstrating its anti-metastatic effect.

Keywords

Iron chelator
Iron
Desferioxamine
Ndrg-1
Metastasis suppressor

Cited by (0)