Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T08:42:19.327Z Has data issue: false hasContentIssue false

Coordination of a Multi-Joint Movement in Normal Humans and in Patients with Cerebellar Dysfunction

Published online by Cambridge University Press:  18 September 2015

W.J. Becker*
Affiliation:
Department of Clinical Neurosciences, University of Calgary
E. Kunesch
Affiliation:
Neurologische Klinik, University of Düsseldorf
H.-J. Freund
Affiliation:
Neurologische Klinik, University of Düsseldorf
*
Rm M4-022, Calgary General Hospital, 841 Centre Avenue East, Calgary, Alberta, Canada T2E 0A1
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The contribution of the cerebellar cortex to coordination of a multi-joint throwing movement was studied by measuring various movement and EMG parameters while normal control subjects and patients with cerebellar cortical atrophy threw a ball at a target. Although patients did not throw as accurately as controls, several coordination measurements were normal in the patients. These included parameters used by us to assess elbow-wrist coordination and the coordination of hand opening with activation of more proximal arm muscles. Postural support for the movement at the shoulder was also normal in that the shoulder was not pushed backwards by the reaction forces resulting from the rapid forward acceleration of the forearm and hand. In contrast, however, patients were unable to coordinate the muscles so as to produce the same hand direction from trial to trial when throwing at the same target. In addition, EMG onset times were abnormal in the antagonist muscles relative to agonist EMG bursts and kinematic parameters of the movement. In conclusion, our patients with cerebellar cortical atrophy showed abnormalities in visual-motor coordination, in that they were unable to consistently produce the appropriate hand direction in response to a visual target. Agonist-antagonist relationships were also impaired. Other aspects of coordination, such as the relative timing of EMG onsets of agonist muscles, even when these were active at different joints, were normal.

Résumé:

RÉSUMÉ:

Nous avons étudié la contribution du cortex cérébelleux à la coordination d'un mouvement de projection impliquant plusieurs articulations, en mesurant certains paramètres du mouvement et de l'EMG alors que les contrôles normaux et les patients avec une atrophie corticale cérébelleuse lançaient une balle vers une cible. Même si les patients ne lançaient pas de façon aussi précise que les sujets contrôles, plusieurs mesures de la coordination étaient normales chez les patients, dont certains paramètres que nous utilisons pour évaluer la coordination coudepoignet et la coordination de l'ouverture de la main avec l'activation de muscles proximaux du bras. Le support postural du mouvement de l'épaule était normal, c'est-à-dire que l'épaule n'était pas repoussée vers l'arrière par les forces de réaction résultant de l'accélération rapide vers l'avant de l'avant-bras et de la main. Cependant, les patients n'étaient pas capables de coordonner les muscles pour reproduire la même direction de la main d'un essai à l'autre lorsqu'ils lançaient vers la même cible. De plus, le moment du début de l'activité EMG était anormal dans les muscles antagonistes relativement aux salves EMG des muscles agonistes et aux paramètres kinématiques du mouvement. Nous concluons que nos patients atteints d'atrophie corticale cérébelleuse présentent des anomalies de la coordination visuomotrice, du fait qu'ils n'étaient pas capables de reproduire avec constance le mouvement approprié dirigeant la main en réponse à une cible visuelle. Les relations agoniste-antagoniste étaient également altérées. D'autres aspects de la coordination, tel la synchronisation du début de l'activité EMG des muscles agonistes, même quand ils étaient actifs au niveau de différentes articulations, étaient normaux.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1990

References

REFERENCES

1. Bernstein, N. The coordination and regulation of movements. Oxford: Pergamon Press 1967.Google Scholar
2. Jeannerod, M. The neural and behavioural organization of goal-directed movements. Oxford: Clarendon Press 1988.Google Scholar
3. Morasso, P. Spatial control of arm movements. Exp Brain Res 1981; 42: 223227.Google Scholar
4. Ito, M. The cerebellum and neural control. New York: Raven Press 1984.Google Scholar
5. Holmes, G. The cerebellum of man. Brain 1939; 62: 130.CrossRefGoogle Scholar
6. Lacquanti, F, Soechting, JF. Coordination of arm and wrist motion during a reaching task. J Neurosci 1982; 2: 399408.Google Scholar
7. Becker, WJ, Kunesch, E, Freund, H-J. Coordination during a multi-joint arm movement in normal humans and in patients with cerebellar dysfunction. Soc Neurosci Abst 1988; 14: 384.19.Google Scholar
8. Becker, WJ, Kunesch, E, Freund, H-J. Coordination of distal and proximal arm muscles during a rapid multi-joint movement in patients with cerebellar dysfunction. Can J Neurol Sci 1989; 16: 284.Google Scholar
9. Holmes, G. A form of familial degeneration of the cerebellum. Brain 1907; 30: 466489.CrossRefGoogle Scholar
10. Marie, P, Foix, C, Alajouanine, T. De I’atrophie cerebelleuse tardive a predominance corticale. Rev Neurol 1922; 29: 849885, 1082–1111.Google Scholar
11. Basmajian, JV, De Luca, CJ. Muscles alive. Baltimore: Williams and Wilkins 1985.Google Scholar
12. Knudsen, El, du Lac, S, Esterly, SD. Computational maps in the brain. Ann Rev Neurosci 1987; 10: 4165.Google Scholar
13. Hallett, M, Shahani, BT, Young, RR. EMG analysis of patients with cerebellar deficits. J Neurol Neurosurg Psychiatry 1975; 38: 11631169.Google Scholar
14. Brooks, VB, Thach, WT. Cerebellar control of posture and movement. In: Brookhart, JM, Mountcastle, VB Brooks, VB, Geiger, SR , eds. Handbook of Physiology, The Nervous System, Vol. 2 Motor Control. Bethesda: Williams and Wilkins 1981; 877946.Google Scholar
15. Hore, J, Vilis, T. Loss of set in muscle responses to limb perturbations during cerebellar dysfunction. J Neurophysiol 1984; 51: 11371148.Google Scholar
16. Andersen, RA, Essick, GK, Siegel, RM. Encoding of spatial location by posterior parietal neurons. Science 1985; 230: 456458.CrossRefGoogle ScholarPubMed
17. Stein, JF. Role of the cerebellum in the visual guidance of movement. Nature 1986; 323: 217221.Google Scholar
18. Glickstein, M, May, JG III, Mercier, BE. Corticopontine projection in the Macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 1985; 235: 343359.CrossRefGoogle ScholarPubMed
19. Strick, PL. Anatomical analysis of ventrolateral thalamic input to primate motor cortex. J Neurophysiol 1976; 39: 10201031.Google Scholar
20. Thach, WT. Cerebellar inputs to motor cortex. In: Motor areas of the cerebral cortex. Ciba Foundation Symposium 132. Chichester: John Wiley and Sons 1987; 201215.Google Scholar
21. Thach, WT. Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Res 1975; 88: 233241.CrossRefGoogle ScholarPubMed
22. Meyer-Lohman, J, Hore, J, Brooks, VB. Cerebellar participation in generation of prompt arm movements. J Neurophysiol 1977; 40: 10381050.CrossRefGoogle Scholar
23. Spidalieri, G, Busby, L, Lamarre, Y. Fast ballistic ami movements triggered by visual, auditory, and somesthetic stimuli in the monkey. II. Effects of unilateral dentate lesion on discharge of pre-central cortical neurons and reaction time. J Neurophysiol 1983; 50: 13591379.Google Scholar
24. Rizzolatti, G. Functional organization of inferior area 6. In: Motor areas of the cerebral cortex. Ciba Foundation Symposium 132. Chichester: John Wiley and Sons 1987; 171186.Google Scholar
25. Mann, SE, Thau, R, Schiller, PH. Conditional task-related responses in monkey dorsomedial frontal cortex. Exp Brain Res 1988; 69: 460468.Google Scholar
26. Shinoda, Y, Yokota, J, Futami, T. Divergent projections of individual corticospinal axons to motoneurons of multiple muscles in the monkey. Neurosci Lett 1981; 23: 712.Google Scholar
27. Lawrence, DG, Porter, R, Redman, SJ. Corticomotoneuronal synapses in the monkey: light microscopic localization upon motoneurons of intrinsic muscles of the hand. J Comp Neurol 1985; 232: 499510.CrossRefGoogle ScholarPubMed
28. Fetz, EE, Cheney, PD. Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J Neurophysiol 1980; 44: 751772.Google Scholar
29. Buys, EJ, Lemon, RN, Mantel, GWH, et al. Selective facilitation of different hand muscles by single corticospinal neurones in the conscious monkey. J Physiol 1986; 381: 529549.CrossRefGoogle ScholarPubMed
30. Georgopoulos, AP. Neural integration of movement: role of motor cortex in reaching. The Federation of American Societies for Experimental Biology Journal 1988; 2: 28492857.Google Scholar
31. Georgopoulos, AP, Schwartz, AB, Kettner, RE. Neuronal population coding of movement direction. Science 1986; 233: 14161419.CrossRefGoogle ScholarPubMed
32. Kettner, RE, Schwartz, AB, Georgopoulos, AP. Primate motor cortex and free arm movements to visual targets in three-dimensional space. III. Positional gradients and population coding of movement direction from various movement origins. J Neurosci 1988; 8: 29382947.Google Scholar
33. Brooks, VB. Cerebellar functions in motor control. Hum Neurobiol 1984; 2: 251260.Google Scholar
34. Watanabe, E. Neuronal events correlated with long-term adaptation of the horizontal vestibulo-ocular reflex in the primate flocculus. Brain Res 1984; 297: 169174.Google Scholar
35. Stone, LS, Lisberger, SG. Detection of tracking errors by visual climbing fiber inputs to monkey cerebellar flocculus during pursuit eye movements. Neurosci Lett 1986; 72: 163168.Google Scholar
36. Wang, J-J. Kim, JH, Ebner, TJ. Climbing fiber afferent modulation during visually guided, multi-joint arm movement in the monkey. Brain Res 1987; 410: 323329.CrossRefGoogle ScholarPubMed
37. Eadie, MJ. Cerebello-olivary atrophy (Holmes type). In: Vinken, PJ, Bruyn, GW, DeJong, JMBV, Klawans, HL, eds. System disorders and atrophies. Handbook of Clinical Neurology. Amsterdam: North Holland Publishing Company 1975; 21: 403414.Google Scholar
38. Oppenheimer, DR. Diseases of the basal ganglia, cerebellum and motor neurons. In: Hume Adams, J, Corsellis, JAN, Duchen, LW, eds. Greenfield’s Neuropathology. New York: John Wiley and Sons 1984; 699747.Google Scholar