Skip to main content
Log in

Creation of Polarized Cells Coexpressing CYP3A4, NADPH Cytochrome P450 Reductase and MDR1/P-glycoprotein

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To develop model polarized cell systems expressingcytochrome P4503A4, NADPH P450 reductase, and P-glycoprotein (Pgp).

Methods. LLC-PK1 and derivative L-MDR1 cells stably expressing Pgp,the product of the multidrug resistance gene (MDR1), were transfectedstably using either a mammalian neomycin selectable expression vector(CYP3A4-Neo) or an episomal vector based on Epstein—Barr virus(CYP3A4-Hygro). These CYP3A4 expressing cells were compared withLLC-PK1, L-MDR1, or Caco-2 cells transduced with Adenovirus-3A4vector (Ad3A4) with or without simultaneous Adenovirus-P450 Reductase(AdRed) transduction. Cells were characterized for expression of CYP3A4protein and CYP3A4 mediated metabolism towards midazolam and testosterone. Analysis of membrane integrity and drug transport assays wereperformed to determine whether infection with recombinant Ad3A4 ±AdRed affected Pgp function.

Results. The rank order of optimal CYP3A4 expression and activitiesin LLC-PK1 and L-MDR1 cells from highest to lowest was cellsco-transduced with Ad3A4 plus AdRed >> Ad3A4 >>>CYP3A4-Hygro > CYP3A4-Neo. Similarly, coexpression of Ad3A4 plus AdRedled to enhanced CYP3A4 mediated metabolism in Caco-2 cells overcells with Ad3A4 alone. Incubation of transwell cultured cells expressing Ad3A4/AdRed with midazolam led to readily detectable metabolitein the medium. In microsomes from Caco-2 and LLC-PK1 cells, eachco-transduced with Ad3A4/AdRed, Vmax values for testosterone6β-hydroxylase activity ranged from 414 to 1350 pmoles/min/mg,respectively. For either Caco-2 or LLC-MDR1 cells, TEER values and therate of apical to basal and basal to apical transport of vinblastine ordigoxin were similar in cells with and without Ad3A4/Red transduction.

Conclusions. Polarized cellular systems coexpressing Ad3A4, AdRed,and the MDR1/Pgp transporter were developed and characterized. Theresults document the utility of these polarized model systems forsimultaneous drug transport/drug metabolism studies. Since the experimentalapproach can be adapted to study the interplay of multipleenzyme/transporting systems, it may find significant application as a screeningtool for the pharmaceutical industry and as a more basic research toolto study the kinetics of intestinal drug bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. T. Friedberg and C. R. Wolf. Recombinant DNA technology as an investigative tool in drug metabolism research. Adv. Drug Del. Rev. 22:187–213 (1996).

    Google Scholar 

  2. A. Schneider, W. A. Schmalix, V. Siruguri, E. M. de Groene, G. J. Horbach, B. Kleingeist, D. Lang, R. Bocker, C. Belloc, P. Beaune, H. Greim, and J. Doehmer. Stable expression of human Cytochrome P450 3A4 in conjunction with human NADPH-Cytochrome P450 Oxidoreductase in V79 Chinese Hamster Cells. Arch. Biochem. Biophys. 332:295–304 (1996).

    Google Scholar 

  3. P. Schmiedlin-Ren, K. E. Thummel, J. M. Fisher, M. F. Paine, K. S. Lown, and P. B. Watkins. Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1-alpha 25-dihydroxyvitamin D3. Mol. Pharmacol. 51:741–754 (1997).

    Google Scholar 

  4. C. L. Crespi, B. W. Penman, and M. Hu. Development of Caco-2 cells expressing high levels of cDNA-derived cytochrome P4503A4. Pharmacol. Res. 13:1635–1641 (1996).

    Google Scholar 

  5. E. G. Schuetz, A. H. Schinkel, M. V. Relling, and J. D. Schuetz. P-glycoprotein: A major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc. Natl. Acad. Sci. USA 93:4001–4005 (1996).

    Google Scholar 

  6. M-C. Gres, B. Julian, M. Bourrie, V. Meunier, C. Roques, M. Berger, X. Boulenc, Y. Berger, and G. Fabre. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: Comparison with the parental Caco-2 cell line. Pharmacol. Res. 15:726–733 (1998).

    Google Scholar 

  7. J. C. Kolars, W. M. Awni, R. M. Merion, and P. B. Watkins. First-pass metabolism of cyclosporin by the gut. Lancet 338:1488–1490 (1991).

    Google Scholar 

  8. A. H. Schinkel, E. Wagenaar, L. van Deemter, C. Mol, and P. Borst. Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin and cyclosporin A. J. Clin. Invest. 96:1698–1705 (1995).

    Google Scholar 

  9. R. Evers, M. Kool, L. van Deemter, H. Janssen, J. Calafat, L. Oomen, C. C. Paulusma, R. P. J. Oude Elferink, F. Baas, A. H. Schinkel, and P. Borst. Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J. Clin. Invest. 101:1310–1319 (1998).

    Google Scholar 

  10. R. Evers, G. J. R. Zaman, L. van Deemter, H. Jansen, J. Calafat, L. C. J. M. Oomen, R. P. J. Oude Elferinck, P. Borst, and A. H. Schinkel. Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. J. Clin. Invest. 97:1211–1218 (1996).

    Google Scholar 

  11. V. Lecureur, D. Sun, P. Hargrove, E. G. Schuetz, R. Kim, L. B. Lan, and J. D. Schuetz. Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol. Pharmacol. 57:24–35 (2000).

    Google Scholar 

  12. A. C. Nathwani, D. A. Persons, S. C. Stevenson, P. Frare, A. McClelland, A. W. Nienhuis, and E. F. Vanin. Adenovirus-mediated expression of the murine ecotropic receptor facilitates transduction of human hematopoietic cells with an ecotropic retroviral vector. Gene Ther. 6:1456–1468 (1999).

    Google Scholar 

  13. W. J. McGrory, D. S. Bautista, and F. L. Graham. A simple technique for the rescue of early region 1 mutations into infectious human adenovirus type 5. Virology 163:614–617 (1988).

    Google Scholar 

  14. F. L. Graham and L. Prevec. Manipulation of adenovirus vectors. In: Methods in Molecular Biology. Vol. 7: Gene transfer and expression protocols, edited by E.J. Murray, New York: Clifton: The Human Press, Inc., 1991, pp. 109–128.

    Google Scholar 

  15. P. Beaune, P. Kremers, F. Letawe-Goujon, and J. E. Gielen. Monoclonal antibodies against human liver cytochrome P-450. Biochem. Pharmacol. 34:3547–3552 (1985).

    Google Scholar 

  16. C. Hidaka, E. Milano, P. L. Leopold, J. M. Bergelson, N. R. Hackett, R. W. Finberg, T. J. Wickham, I. Kovesdi, P. Roelvink, and R. G. Crystal. CAR-dependent and CAR-independent pathways of adenovirus vector-mediated gene transfer and expression in human fibroblasts. J. Clin. Invest. 103:579–587 (1999).

    Google Scholar 

  17. S. A. Wrighton, W. R. Brian, M.-A. Sari, M. Iwasaki, F. P. Guengerich, J. L. Raucy, D. T. Molowa, and M. Vandenbranden. Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol. Pharmacol. 38:207–213 (1990).

    Google Scholar 

  18. M. Hu, L. Yiqi, C. M. Davitt, S.-M. Huang, K. Thummel, B. W. Penman, and C. L. Crespi. Transport and metabolic characterization of Caco-2 cells expressing CYP3A4 and CYP3A4 plus oxido-reductase. Pharmacol. Res. 16:1352–1359 (1999).

    Google Scholar 

  19. T. Aoyama, S. Yamano, D. J. Waxman, D. P. Lapenson, U. A. Meyer, V. Fischer, R. Tyndale, T. Inaba, W. Kalow, H. V. Gelboin, and F. J. Gonzalez. Cytochrome P450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J. Biol. Chem. 264:10388–10395 (1989).

    Google Scholar 

  20. A. J. Draper, A. Madan, K. Smith, and A. Parkinson. Development of a non-high pressure liquid chromatography assay to determine testosterone hydroxylase (CYP3A) activity in human liver microsomes. Drug Metab. Dispos. 26:299–304 (1998).

    Google Scholar 

  21. C. A. Lee, S. H. Kadwell, T. A. Kost, and C. J. Serabjit-Singh. CYP3A4 expressed by insect cells infected with a recombinant baculovirus containing both CYP3A4 and human NADPH-cytochrome P450 reductase is catalytically similar to human liver microsomal CYP3A4. Arch. Biochem. Biophys. 319:157–167 (1995).

    Google Scholar 

  22. K. Takayama, H. Ueno, X. H. Pei, Y. Nakanishi, J. Yatsunami, and N. Hara. The levels of integrin alpha v beta 5 may predict the susceptibility to adenovirus-mediated gene transfer in human lung cancer cells. Gene Ther. 5:361–368 (1998).

    Google Scholar 

  23. S. Tatebe, T. Matsuura, K. Endo, R. Doi, A. Goto, K. Sato, and H. Ito. Adenoviral transduction efficiency partly correlates with expression levels of integrin alphavbeta5, but not alphavbeta3 in human gastic carcinoma cells. Int. J. Mol. Med. 2:61–64 (1998).

    Google Scholar 

  24. Y. Hashimoto, K. Kohri, H. Akita, K. Mitani, K. Ikeda, and M. Nakanishi. Efficient transfer of genes into senescent cells by adenovirus vectors via highly expressed alpha v beta 5 integrin. Biochem. Biophys. Res. Commun. 240:88–92 (1997).

    Google Scholar 

  25. C. Y. Chiu, P. Mathias, G. R. Nemorow, and P. L. Stewart. Structure of adenovirus complexed with its internalization receptor, alphavbeta5 integrin. J. Virol. 73:6759–6768 (1999).

    Google Scholar 

  26. M. A. Croyle, E. Walter, S. Janich, B. J. Roessler, and G. L. Amidon. Role of integrin expression in adenovirus-mediated gene delivery to the intestinal epithelium. Hum. Gene Ther. 9:561–573 (1998).

    Google Scholar 

  27. R. J. Yanez and A. C. G. Porter. Therapeutic gene targeting. Gene Ther. 5:149–159 (1998).

    Google Scholar 

  28. T. Tsukui, Y. Kanegal, I. Saito, and Y. Toyoda. Transgenesis by adenovirus-mediated gene transfer into mouse zona-free eggs. Nature Biol. 14:982–985 (1996).

    Google Scholar 

  29. A. H. Schinkel, U. Mayer, E. Wagenaar, C. A. A. M. Mol, L. van Deemter, J. J. M Smit,, M. A. van der Valk, A. C. Voordouw, H. Spits, O. van Tellingen, J. Zijlmans, W. E. Fibbe, and P. Borst. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc. Natl. Acad. Sci. USA 94:4028–4033 (1997).

    Google Scholar 

  30. M. V. Relling, J. Nemec, E. G. Schuetz, J. D. Schuetz, F. J. Gonzalez, and K. R. Korzekwa. O-demethylation of epipodophyl-lotoxins is catalyzed by human cytochrome P450 3A4. Mol. Pharmacol. 45:352–358 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brimer, C., Dalton, J.T., Zhu, Z. et al. Creation of Polarized Cells Coexpressing CYP3A4, NADPH Cytochrome P450 Reductase and MDR1/P-glycoprotein. Pharm Res 17, 803–810 (2000). https://doi.org/10.1023/A:1007599923694

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007599923694

Navigation