Skip to main content
Log in

Systemic Short-Chain Fatty Acids Rapidly Alter Gastrointestinal Structure, Function, and Expression of Early Response Genes

  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Luminal and systemic short chain fatty acids (SCFA) stimulate mucosal proliferation but the mechanism(s) is unclear. This study examined acute effects of systemic SCFAs on gastrointestinal structure and function and signals potentially mediating SCFA-induced mucosal proliferation. Male Sprague-Dawley rats (246 ± 2 g) received nutrients as either standard total parenteral nutrition (TPN) or an isoenergetic, isonitrogenous formulation containing SCFAs (TPN + SCFA). Animals were randomized to one of five treatments: standard TPN for 72 hr, TPN + SCFA for 72 hr, or standard TPN followed by TPN + SCFA for the final 6, 12, and 24 hr. SCFAs reduced (P < 0.003) ileal protein within 6 hr. Jejunal GLUT2 expression was increased (P = 0.0001) in all SCFA groups and ileal GLUT2 protein in the 6-, 12-, and 24-hr SCFA groups (P < 0.05). SCFAs increased (P < 0.003) ileal proglucagon abundance following 6, 12, and 24 hr, and plasma GLP-2 concentration following 12 hr (P < 0.03). Jejunal c-myc expression was increased (P < 0.001) following 6, 12, and 24 hr of SCFAs. SCFAs increased ileal c- myc , c- jun, and c-fos expression following 24 hr (P < 0.02), 12 hr (P < 0.05) and 6, 12, and 24 hr (P = 0.0001), respectively. In conclusion, systemic SCFAs increase plasma GLP-2 and ileal proglucagon mRNA, GLUT2 expression and protein, and c-myc, c-jun, and c-fos expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Lipkin M: Proliferation and differentiation of normal and diseased gastrointestinal cells. Inedited by LR Johnson (ed). Physiology of the Gastrointestinal Tract, 2nd ed. New York, Raven Press, 1987, pp 255- 284

    Google Scholar 

  2. Johnson LR, Copeland EM, Dudrick SJ, Lichtenberger L, Castro GA: Structural and hormonal alterations in the gastrointestinal tract of parenterally fed rats. Gastroenterology 68:1177- 1183, 1975

    PubMed  Google Scholar 

  3. Inoue Y, Espat NJ, Frohnapple DJ, Epste in H, Copeland EM, Souba WW: Effect of total parenteral nutrition on amino acid and glucose transport by the human small intestine. Ann Surg 217:604 - 612, 1993

    PubMed  Google Scholar 

  4. Ford WDA, Boelhaower RU, King WWK, DeVriews JE, Ross JS, Malt RA: Total parente ral nutrition inhibits intestinal adaptive hyperplasia in young rats: Reversal by feeding. Surgery 96:527- 734, 1984

    PubMed  Google Scholar 

  5. Morin CL, Ling V, Van Caillie M: Role of oral intake on intestinal adaptation after small bowel re section in growing rats. Pediatr Res 12:268 - 271, 1978

    PubMed  Google Scholar 

  6. Koruda MJ, Rolandelli RH, Bliss DZ, Hastings J, Rombeau JL, Settle RG: Parente ral nutrition supplemented with shortchain fatty acids: Effect on the small-bowel mucosa in normal rats. Am J Clin Nutr 51:685- 689, 1990

    PubMed  Google Scholar 

  7. Koruda MJ, Rolandelli RH, Settle RG, Zimmaro DM, Rombeau JL: Effect of parente ral nutrition supplemented with short-chain fatty acids on adaptation to massive small bowel resection. Gastroenterology 95:715- 720, 1988

    PubMed  Google Scholar 

  8. Tappenden KA, Thomson ABR, Wild GE, McBurne y MI: Short-chain fatty acids increase proglucagon and ornithine decarboxylase me ssenge r RNAs following intestinal re se ction in rats. JPEN 20:357- 362, 1996

    Google Scholar 

  9. Tappenden KA, Thomson ABR, Wild GE, McBurne y MI: Short-chain fatty acid supplemented total parenteral nutrition enhance s intestinal function following massive small bowel resection. Gastroenterology 112:792- 802, 1997

    PubMed  Google Scholar 

  10. Mosjov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habe ner JR: Preproglucagon gene expression in pancreas and intestine diversifies at the level of posttranslational processing. J Biol Chem 261:11880 - 11889, 1986

    PubMed  Google Scholar 

  11. Orskov C, Holst JJ, Poulsen SS, Kirkegaard P: Pancreatic and intestinal processing of proglucagon in man. Diabe tologia 30:873- 881, 1987

    Google Scholar 

  12. Larsson L-I, Holst J, Hakanson R, Sundler F: Distribution and properties of glucagon immunoreactivity in the digestive tract of various mammals: An immunohistochemical and immunochemical study. Histochemistry 44:281- 290, 1975

    PubMed  Google Scholar 

  13. Bloom SR, Polak JM: The hormonal pattern of intestinal adaptation: a major role for enteroglucagon. Scand J Gastroente rol 14( suppl 74):93- 103, 1982

    Google Scholar 

  14. Rountree DB, Ulshen MH, Selub S, Fuller CR, Bloom SR, Ghatei MA, Lund PK: Nutrient-independent increases in proglucagon and ornithine decarboxylase messenger RNAs after jejunoileal resection. Gastroenterology 103:462- 468, 1992

    PubMed  Google Scholar 

  15. Sagor GR, Ghatei MA, Al-Mukhtar MYT, Wright NA, Bloom SR: Evidence for a humoral mechanism after small intestinal resection: Exclusion of gastrin but not ente roglucagon. Gastroente rology 84:902- 906, 1983

    Google Scholar 

  16. Cheeseman CI, Tsang R: The effect of GIP and glucagon-like peptides on intestinal basolateral membrane hexose transport. Am J Physiol (Gastrointest Liver Physiol) 271:G477- G482, 1996

    Google Scholar 

  17. Marcu KB, Bossone SA, Patel AJ: Myc function and regulation. Annu Rev Biochem 61:809 - 860, 1992

    PubMed  Google Scholar 

  18. Rottleb C, Bornkamm GW, Polack A: Among 17 inducers of differentiation only sodium butyrate causes a permanent downregulation of c-mycin Burkitt's lymphoma. Int J Cancer 62:697- 702, 1995

    PubMed  Google Scholar 

  19. de Groot RP, Schoorlemmer J, Van Genesen ST, Siebe T, Kruijer W: Differential expression of Junand Fosgenes during differentiation of mouse P19 embryonal carcinoma cells. Nucle ic Acids Res 18:3195- 3202, 1990

    Google Scholar 

  20. Hodin RA, Graham JR, Meng S, Upton MP: Temporal pattern of rat small intestinal gene expression with re feeding. Am J Physiol (Gastrointest Liver Physiol) 266:G83- G89, 1994

    Google Scholar 

  21. Holt PR, DuBois RN: In vivoimmediate early gene expression induced in intestinal and colonic mucosa by feeding. FEBS Lett 287:102- 104, 1991

    PubMed  Google Scholar 

  22. Rabizadeh E, Shaklai M, Nude lman A, Eisenbach L, Rephaeli A: Rapid alteration of c-mycand c-junexpression in leukemic cells induced to differentiate by a butyric acid prodrug. FEBS Lett 328:225- 229, 1993

    PubMed  Google Scholar 

  23. Souleimani A, Asselin C: Regulation of c-fosexpression by sodium butyrate in the human colon carcinoma cell line Caco-2. Biochem Biophys Res Commun 193:330 - 336, 1993

    PubMed  Google Scholar 

  24. Tang SJ, Huang YM, Wang FF: Analysis of c-fosexpression in the butyrate-induced F-98 glioma cell differentiation. Biochem J 306:47- 56, 1995

    PubMed  Google Scholar 

  25. Nishina Y, Sumi T, Souichi A, Kosaka M, Nishimune Y: The induction of jun genes during the reversible changes induced with sodium butyrate on the differentiation of F9 cells. Exp Cell Res 208:492- 497, 1993

    PubMed  Google Scholar 

  26. Miller AA, Kurschel E, Osieka R, Schmidt C: Clinical pharmacology of sodium butyrate in patients with acute leukemia. Eur J Clin Oncol 23:1283- 1287, 1987

    Google Scholar 

  27. Vela zquez OC, Zhou D, Seto RW, Jabbar A, Choi J, Lederer HM, Rombeau JL: In vivocrypt surface hype rproliferation is decrease d by butyrate and increase d by deoxycholate in normal rat colon: Associated in vivoeffects on c-fosand c-junexpression. JPEN 20:243- 250, 1996

    Google Scholar 

  28. Marsman KE, McBurney MI: Dietary fiber increases oxidative me tabolism in colonocytes but no in distal small intestinal enterocytes isolated from rats. J Nutr 125:273- 282, 1995

    PubMed  Google Scholar 

  29. Popp MB, Brennan MF: Long-term vascular access in the rat: importance of aseptis. Am J Physiol 241:H606 - H612, 1981

    PubMed  Google Scholar 

  30. Prasad AS, DuMouchelle E, Koniuch D, Oberleas D: A simple fluorometric method for determination of RNA and DNA in tissues. J Lab Clin Med 60:598 - 602, 1972

    Google Scholar 

  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193:265- 275, 1951

    PubMed  Google Scholar 

  32. Correa-Rotter R, Mariash CN, Rosenberg ME: Loading and transfer control for northern hybridization. Biotechniques 12:154 - 158, 1992

    PubMed  Google Scholar 

  33. Finnegan MC, Goepel JR, Hancock BW, Goyns MH: Inve stigation of the expression of housekeeping genes in non-Hodgkin’ s lymphoma. Leukemia Lymphoma 10:387- 393, 1993

    PubMed  Google Scholar 

  34. Maenz D, Cheeseman CI: Effect of hyperglycaemia on Dglucose transport across the brush border and basolateral membranes of rat small intestine. Biochim Biophys Acta 860:277- 285, 1986

    PubMed  Google Scholar 

  35. Orsenigo MN, Tosco M, Esposito G, Faelli A: The basolateral membrane of rat enterocyte: Its purification from brush border contamination. Anal Biochem 144:577- 583, 1985

    PubMed  Google Scholar 

  36. Yakymyshyn LM, Walker K, Thomson ABR: Use of Percoll in the isolation and purification of rabbit small intestinal brush border membranes. Biochim Biophys Acta 693:269 - 281, 1982

    Google Scholar 

  37. Menge H, Robinson JWL, Riechen E-O: Structural and functional correlations in the hypoplastic and hype rplastic mucosa of the rat small intestine. InMechanisms of Intestinal Adaptation. JWL Robinson, RH Dowling, E-O Riecken (eds). Lancaster, MTP Press, 1982, pp 383- 389

    Google Scholar 

  38. Cheeseman CI: Role of intestinal basolate ral membrane in absorption of nutrients. Am J Physiol (Gastrointest Liver Physiol) 263:R482- R488, 1992

    Google Scholar 

  39. Taylor RG, Verity K, Fuller PJ: Ileal glucagon gene expression: Ontogeny and response to massive small bowel resection. Gastroenterology 99:724 - 729, 1990

    PubMed  Google Scholar 

  40. Sacks AI, Warwick GJ, Barnard JA: Early proliferative eve nts following intestinal resection in the rat. J Pediatr Gastroenterol Nutr 21:158 - 164, 1995

    PubMed  Google Scholar 

  41. Kruh J, Defer N, Richonicky L: Effects of butyrate in cell proliferation and gene expression. InJH Cummings, JL Rombeau, T Sakata (eds). Physiological and Clinical Aspects of Short-Chain Fatty Acids. Cambridge, Cambridge University Press, pp 275- 288, 1995

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tappenden, K.A., Mcburney, M.I. Systemic Short-Chain Fatty Acids Rapidly Alter Gastrointestinal Structure, Function, and Expression of Early Response Genes. Dig Dis Sci 43, 1526–1536 (1998). https://doi.org/10.1023/A:1018819032620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018819032620

Navigation