Skip to main content
Log in

Life and death decisions: the role of the IAPs in modulating programmed cell death

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Multicellular organisms have evolved elaborate signal transduction pathways for maintaining homeostasis through the control of cell proliferation and death. The recent surge of interest in the regulation of programmed cell death has led to the rapid identification of many proteins involved in controlling and executing apoptosis. The inhibitors of apoptosis proteins (IAPs) constitute a family of highly conserved death suppressing proteins that were first identified in baculoviruses, and that has recently expanded to include at least two homologues in Drosophila melanogaster and four in rodents and humans. In this article we review the current state of IAP research. Two of the IAPs, HIAP-1 and HIAP-2, have been placed within the TNFα induced cell death pathway which involves two receptors for TNFα and multiple, overlapping signal transduction proteins. A third, X-linked gene termed XIAP, is ubiquitously expressed and appears to have a broad range of suppressor activity to a variety of apoptotic triggers. The fourth member, NAIP, has been identified as the protein product of a candidate gene for the inherited neuromuscular disorder, spinal muscular atrophy (SMA). The neuroprotective activity of NAIP in an in vivo model of cerebral ischemia has also been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide ranging implications in tissue kinetics. J Br Cancer 1972; 26: 239–257.

    CAS  Google Scholar 

  2. Vaux DL, Haecker G, Strasser A. An evolutionary perspective on apoptosis. Cell 1994; 76: 777–779.

    Article  PubMed  CAS  Google Scholar 

  3. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    Article  PubMed  CAS  Google Scholar 

  4. King KL, Cidlowski JA. Cell cycle and apoptosis: Common pathways to life and death. J Cell Biochem 1995; 58: 175–1180.

    Article  PubMed  CAS  Google Scholar 

  5. Hale AJ, Smith CA, Sutherland LC, et al. Apoptosis: Molecular regulation of cell death. Eur J Biochem 1996; 236: 1–26.

    Article  PubMed  CAS  Google Scholar 

  6. Oltvai ZN, Korsmeyer SJ. Checkpoints of dueling dimers foil death wishes. Cell 1994; 79: 189–192.

    Article  PubMed  CAS  Google Scholar 

  7. White E. Life, death, and the pursuit of apoptosis. Genes Dev 1996; 10: 1–15.

    PubMed  CAS  Google Scholar 

  8. Henderson S, Huen D, Rowe M, Dawson C, Johnson G, Rickinson A. Epstein-Barr virus-encoded BHRF1 protein, a viral homolog of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci 1993; 90: 8479–8483.

    Article  PubMed  CAS  Google Scholar 

  9. Neilan JG, Lu Z, Afonzo CL, Kutish GF, Sussman MD, Rock DL. An African swine fever virus gene with similarity to the proto-oncogene bcl-2 and Epstein-Barr virus gene BHRF1. J Virol 1993; 67: 4391–4394.

    PubMed  CAS  Google Scholar 

  10. White E, Sabbatini P, Debbas M, Wold WSM, Kusher DI, Gooding L. The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor α. Mol Cell Biol 1992; 12: 2570–2580.

    PubMed  CAS  Google Scholar 

  11. Rowe M, Peng-Pilon M, Huen DS, et al. Upregulation of bcl-2 by the Epstein-Barr virus latent membrane protein LMP1: a B-cell-specific response that is delayed relative to NF-kappa B activation and to induction of cell surface markers. J Virol 1994; 68: 5602–5612.

    PubMed  CAS  Google Scholar 

  12. Tewari M, Wolf FW, Seldin MF, O'Shea KS, Dixit VM, Turka LA. Lymphoid expression and regulation of A20, an inhibitor of programmed cell death. J Immunol 1995; 154: 1456–1462.

    Google Scholar 

  13. Ray CA, Black RA, Kronheim SR, et al. Viral inhibition of inflammation: Cowpox virus encodes an inhibitor of the interleukin-1β converting enzyme. Cell 1992; 69: 597–604.

    Article  PubMed  CAS  Google Scholar 

  14. Komiyama T, Ray CA, Pickup DJ, et al. Inhibition of interleukin-1β converting enzyme by the cowpox virus serpin CrmA. J Biol Chem 1994; 269: 19331–19337.

    PubMed  CAS  Google Scholar 

  15. Wang L, Muira M, Bergeron L, Zhu H, Yuan J. Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 1994; 78: 739–750.

    Article  PubMed  CAS  Google Scholar 

  16. Tewari M, Quan LT, O'Rourke K, et al. Yama/CPP-32B, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleases the death substrate poly(ADP-ribose)polymerase. Cell 1995; 81: 801–809.

    Article  PubMed  CAS  Google Scholar 

  17. Nicholson DW, Ali A, Thornberry NA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995; 376: 37–43.

    Article  PubMed  CAS  Google Scholar 

  18. Clem RJ, Fechheimer M, Miller LK. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 1991; 254: 1388–1390.

    Article  PubMed  CAS  Google Scholar 

  19. Kamita SG, Majima K, Maeda S. Identification and characterization of the p35 gene of Bombix mori nuclear polyhedrosis virus that prevent virus-induced apoptosis. J Virol 1993; 67: 455–463.

    PubMed  CAS  Google Scholar 

  20. Bertin J, Armstrong RC, Ottilie S, et al. DED-containing herpesvirus and poxvirus proteins inhibit both Fas-and TNFR1-induced apoptosis. Proc Natl Acad Sci USA 1997; 94: 1172–1176.

    Article  PubMed  CAS  Google Scholar 

  21. McFadden G, Graham K, Ellison K, et al. Interruption of cytokine networks by poxviruses: lessons from myxoma virus. J Leukoc Biol 1995; 5745: 731–738.

    Google Scholar 

  22. Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 1993; 67: 2168–2174.

    PubMed  CAS  Google Scholar 

  23. Birnbaum MJ, Clem RJ, Miller LK. An apoptosis inhibiting gene from a nuclear polyhedrosis virus encoding a peptide with Cys/His sequence motifs. J Virol 1994 68: 2521–2528.

    PubMed  CAS  Google Scholar 

  24. Clem RJ, Hardwick JM, Miller LK. Antiapoptotic genes of baculoviruses. Cell Death Differ 1996; 3: 9–16.

    CAS  PubMed  Google Scholar 

  25. Clem RJ, Miller LK. Control of programmed cell death by the baculovirus genes p35 and iap. Mol Cell Biol 1994; 14: 5212–5222.

    PubMed  CAS  Google Scholar 

  26. Roy N, Mahadevan MS, McLean M, et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 1995; 80: 167–178.

    Article  PubMed  CAS  Google Scholar 

  27. Brzustowitcz LM, Lehner T, Castilla LH, et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2–13.3. Nature 1990; 344: 540–541.

    Article  Google Scholar 

  28. Gilliam TC, Brzustowitcz LM, Castillo LH, et al. Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature 1990; 345: 823–825.

    Article  PubMed  CAS  Google Scholar 

  29. Melki J, Abdelhak S, Sheth P, et al. Gene for chronic proximal spinal muscular atrophies maps to chromosome 5q. Nature 1990; 344: 767–768.

    Article  PubMed  CAS  Google Scholar 

  30. Lewin B. Genes for SMA: multum in parvo. Cell 1995; 80: 1–5.

    Article  PubMed  CAS  Google Scholar 

  31. Xu DG, Korneluk RG, Tamai K, et al. Distribution of neuronal apoptosis inhibitory protein-like immunoreactivity in the rat central nervous system. J Comp Neurol 1997; In Press.

  32. Liston P, Roy N, Tamai K, et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996; 379: 349–353.

    Article  PubMed  CAS  Google Scholar 

  33. Xu DG, Crocker SJ, Doucet JP, et al. Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nat Med 1997; 3: 997–1004.

    Article  PubMed  CAS  Google Scholar 

  34. Smith-Swintosky VL, Kraemer PJ, Bruce AJ, et al. Bacterial alkaloids mitigate seizure-induced hippocampal damage and spatial memory deficits. Exp Neurol 1996; 141: 287–296.

    Article  PubMed  CAS  Google Scholar 

  35. Lefebvre S, Burglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995; 80: 155–165.

    Article  PubMed  CAS  Google Scholar 

  36. Sommerville MJ, Hunter AGW, Aubrey HL, Korneluk RG, MacKenzie AE, Surh LC. Clinical application of the molecular diagnosis of spinal muscular atrophy: Deletions of neuronal apoptosis inhibitor protein and survival motor neuron genes. Am J Med Genetics: In press.

  37. van der Steege G, Grootscholten PM, Cobben JM, et al. Apparent gene conversions involving the SMN gene in the region of the spinal muscular atrophy locus on chromosome 5. Am J Hum Genetics 1996; 59: 834–838.

    CAS  Google Scholar 

  38. Liu Q, Dreyfuss G. A novel nuclear structure containing the survival of motor neurons protein. EMBO J 1996; 15: 3555–3565.

    PubMed  CAS  Google Scholar 

  39. Uren AG, Pakusch M, Hawkins CJ, Puls KL, Vaux DL. Cloning and expression of apoptosis inhibitory protein homologues that function to inhibit apoptosis and/or bind tumor necrosis factor receptor associated factors. Proc Natl Acad Sci USA 1996; 93: 4974–4978.

    Article  PubMed  CAS  Google Scholar 

  40. Duckett CS, Nava VE, Gedrich RW, et al. A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J 1996; 15: 2685–2694.

    PubMed  CAS  Google Scholar 

  41. Rothe M, Pan M-G, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor or apoptosis proteins. Cell 1995a; 83: 1243–1252.

    Article  PubMed  CAS  Google Scholar 

  42. Digby MR, Kimpton WG, York JJ, Connick TE, Lowenthal JW. ITA: a vertebrate homologue of IAP that is expressed in T lymphocytes. DNA Cell Biol 1996; 15: 981–988.

    Article  PubMed  CAS  Google Scholar 

  43. Separovic E-R, Liston P, Lefebvre C, Korneluk RG. Assignment of human inhibitor of apoptosis protein (IAP) genes xiap, hiap-1, and hiap-2 to chromosomes Xq25 and 11q22–23 by fluorescence in situ hybridization. Genomics 1996; 37: 404–406.

    Article  Google Scholar 

  44. Kozak M. An analysis of vertebrate mRNA sequences: Intimations of translational control. J Cell Biol 1991; 115: 887–903.

    Article  PubMed  CAS  Google Scholar 

  45. Iizuka N, Chen C, Yang Q, Johannes G, Sarnow P. Cap-independent translation and internal initiation of translation in eukaryotic cellular mRNA molecules. Curr Top Microbiol Immunol 1995; 203: 155–177.

    PubMed  CAS  Google Scholar 

  46. Grether ME, Abrams JM, Agapite J, White K, Steller H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 1995; 9: 1694–1708.

    PubMed  CAS  Google Scholar 

  47. White K, Tahaoglu E, Steller H. Cell killing by the Drosophila gene reaper. Science 1996; 271: 805–807.

    Article  PubMed  CAS  Google Scholar 

  48. Chen P, Nordstrom W, Gish B, Abrams JM. Grim, a novel cell death gene in Drosophila. Genes Dev 1996; 10: 1773–1782.

    PubMed  CAS  Google Scholar 

  49. Song ZW, McCall K, Steller H. DCP-1, a Drosophila cell death protease essential for development. Science 1997; 275: 536–540.

    Article  PubMed  CAS  Google Scholar 

  50. Goldstein P, Marguet D, Depraetere V. Homology between reaper and the cell death domains of Fas and TNFR1. Cell 1995; 81: 185–186.

    Article  Google Scholar 

  51. Hay BA, Wassarman DA, Rubin GM. Drosophila homologues of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 1995; 83: 1253–1262.

    Article  PubMed  CAS  Google Scholar 

  52. Saurin AJ, Borden KLB, Boddy MN, Freemont PS. Does this have a familiar RING? Trends Biochem Sci 1996; 21: 197–235.

    Article  Google Scholar 

  53. Bump NJ, Hackett M, Hugunin M, et al. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 1995; 269: 1885–1888.

    Article  PubMed  CAS  Google Scholar 

  54. Xue D, Horvitz R. Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 1995; 377: 248–251.

    Article  PubMed  CAS  Google Scholar 

  55. Dorn R, Krauss V, Reuter G, Saumweber H. The enhancer of position-effect variegation of Drosophila, E(var)3-93D, codes for a chromatin protein containing a conserved domain common to several transcriptional regulators. Proc Natl Acad Sci USA 1993; 90: 11376–11380.

    Article  PubMed  CAS  Google Scholar 

  56. Harvey AJ, Bidwal AP, Miller L. Doom, a product of the Drosophila mod(mgd4) gene, induces apoptosis and binds to baculovirus inhibitor-of-apoptosis proteins. Mol Cell Biol 1997; 17: 2835–2843.

    PubMed  CAS  Google Scholar 

  57. Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: Activation, costimulation, and death. Cell 1994; 76: 7959–7962.

    Google Scholar 

  58. Gruss HJ, Dower SK. Tumor necrosis factor ligand superfamily: Involvement in the pathology of malignant lymphomas. Blood 1995; 85: 3378–3404.

    PubMed  CAS  Google Scholar 

  59. Durie FH, Foy TM, Masters SR, Laman JD, Noelle RJ. The role of CD40 in the regulation of humoral and cell-mediated immunity. Immunol Today 1994; 15: 406–411.

    Article  PubMed  CAS  Google Scholar 

  60. Kitson J, Raven T, Jiang Y-P, et al. A death-domain-containing receptor that mediates apoptosis. Nature 1996; 384: 372–375.

    Article  PubMed  CAS  Google Scholar 

  61. Tartaglia LA, Pennica D, Goeddel DV. Ligand passing: the 75-kD tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kD TNF receptor. J Biol Chem 1993; 268: 18542–18548.

    PubMed  CAS  Google Scholar 

  62. Grell M, Douni E, Wajant H, et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 1995; 83: 793–802.

    Article  PubMed  CAS  Google Scholar 

  63. Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kB activation. Cell 1995; 81: 495–504.

    Article  PubMed  CAS  Google Scholar 

  64. Chinnaiyan AM, Tewari KO, Dixit VM. FADD: a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81: 505–512.

    Article  PubMed  CAS  Google Scholar 

  65. Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/Apo-1) death-inducing signaling complex. Cell 1996; 85: 817–827.

    Article  PubMed  CAS  Google Scholar 

  66. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interactng protease, in Fas/Apo-1-and TNF receptor-induced cell death. Cell 1996; 85: 803–815.

    Article  PubMed  CAS  Google Scholar 

  67. Chinnaiyan AM, Tepper CG, Seldin MF, et al. FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem 1996; 271: 4961–4965.

    Article  PubMed  CAS  Google Scholar 

  68. Stanger BZ, Leder P, Lee T-H, Kim E, Seed B. RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 1995; 81: 513–523.

    Article  PubMed  CAS  Google Scholar 

  69. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996; 4: 387–396.

    Article  PubMed  CAS  Google Scholar 

  70. Duan H, Dixit VM. RAIDD is a new death adaptor molecule. Nature 1997; 385: 86–89.

    Article  PubMed  CAS  Google Scholar 

  71. Ahmad M, Srinivasula S, Wang L, et al. CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Res 1997; 57: 615–619.

    PubMed  CAS  Google Scholar 

  72. Hsu H, Shu H-B, Pan M-G, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996; 84: 299–308.

    Article  PubMed  CAS  Google Scholar 

  73. Shu H-B, Takeuchi M, Goeddel DV. The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc Natl Acad Sci USA 1996; 93: 13973–13978.

    Article  PubMed  CAS  Google Scholar 

  74. Rothe M, Wong SC, Henzel WJ, Goeddel DV. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 1994; 78: 681–692.

    Article  PubMed  CAS  Google Scholar 

  75. Rothe M, Sarma V, Dixit VM, Goeddel DV. TRAF2-mediated activation of NF-kB by TNF receptor 2 and CD40. Science 1995; 269: 1424–1426.

    Article  PubMed  CAS  Google Scholar 

  76. Cheng G, Baltimore D. TANK, a co-inducer with TRAF2 of TNF-and CD40L-mediated NF-kB activation. Genes Dev 1996; 10: 963–973.

    PubMed  CAS  Google Scholar 

  77. Grilli M, Chiu JJ, Lenardo M. NF-kB and Rel: Participants in a multiform transcriptional regulatory system. Int Rev Cytol 1993; 143: 1–60

    Article  PubMed  CAS  Google Scholar 

  78. Song HY, Rothe M, Goeddel DV. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kB activation. Proc Natl Acad Sci USA 1996; 93: 6721–6725.

    Article  PubMed  CAS  Google Scholar 

  79. Opipari AW, Hu HM, Yabkowitz R, Dixit VM. The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem 1992; 267: 12424–12427.

    PubMed  CAS  Google Scholar 

  80. Sarma V, Lin Z, Clark L, et al. Activation of the B-cell surface receptor CD40 induces A20, a novel zinc finger protein that inhibits apoptosis. J Biol Chem 1995; 270: 12343–12346.

    Article  PubMed  CAS  Google Scholar 

  81. Hoffmann K, Bucher P, Tschopp J. The CARD domain: a new apoptotic signaling motif. TiBS 1997; 22: 155–156

    Google Scholar 

  82. Tartaglia LA, Weber RF, Figari IS, Reynolds C, Palladino MA, Goeddel DV. The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc Natl Acad Sci USA 1991; 88: 9292–9296.

    Article  PubMed  CAS  Google Scholar 

  83. Tartaglia LA, Goeddel DV, Reynolds C, et al. Stimulation of human T cell proliferation by specific activation of the 75-kD tumor necrosis factor receptor. J Immunol 1993; 151: 4637–4641.

    PubMed  CAS  Google Scholar 

  84. Gehr G, Gentz R, Brockhaus M, Loetscher H, Lesslauer W. Both tumor necrosis factor receptor types mediate proliferative signals in human mononuclear cell activation. J Immunol 1992; 149: 911–917.

    PubMed  CAS  Google Scholar 

  85. Heller RA, Song K, Fan N, Chang DJ. The p70 tumor necrosis factor receptor mediates cytotoxicity. Cell 1992; 70: 47–56.

    Article  PubMed  CAS  Google Scholar 

  86. Grell M, Scheurich P, Meager A, Pfizenmaier K. TR60 and TR80 tumor necrosis factor (TNF)-receptors can independently mediate cytolysis. Lymphokine Cytokine Res 1993; 12: 143–148.

    PubMed  CAS  Google Scholar 

  87. Amakawa R, Hakem A, Kundig TM, et al. Impaired negative selection of T cells in Hodgkin's disease antigen CD30-deficient mice. Cell 1996; 84: 551–562.

    Article  PubMed  CAS  Google Scholar 

  88. Lee SY, Park CG, Choi Y. T cell receptor-dependent cell death of T cell hybridomas mediated by the CD30 cytoplasmic domain in association with tumor necrosis factor receptor-associated factors. J Exp Med 1996; 183: 669–674.

    Article  PubMed  CAS  Google Scholar 

  89. Gedrich RW, Gilfillan MC, Duckett CS, Van Dongen JL, Thompson CB. CD30 contains two binding sites with different specificities for members of the tumor necrosis factor receptor-associated factor family of signal transducing proteins. J Biol Chem 1996; 271: 12852–12858.

    Article  PubMed  CAS  Google Scholar 

  90. Duckett CS, Gedrich RW, Gilfillan MC, Thompson CB. Induction of nuclear factor kB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol Cell Biol 1997; 17: 1535–1542.

    PubMed  CAS  Google Scholar 

  91. Tsitsikov EN, Wright DW, Geha RS. CD30 induction of human immunodefiency virus gene transcription is mediated by TRAF2. Proc Natl Acad Sci USA 1997; 94: 1390–1395.

    Article  PubMed  CAS  Google Scholar 

  92. Hu HM, O'Rourke K, Boguski MS, Dixit VM. A novel RING finger protein interacts with the cytoplasmic domain of CD40. J Biol Chem 1994; 269: 30069–30072.

    PubMed  CAS  Google Scholar 

  93. Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 1995; 80: 389–399.

    Article  PubMed  CAS  Google Scholar 

  94. Cheng G, Cleary AM, Ye Z, Hong DI, Lederman S, Baltimore D. Involvement of CRAF1, a relative of TRAF, in CD40 signaling. Science 1995; 267: 1494–1498.

    Article  PubMed  CAS  Google Scholar 

  95. Regnier CH, Tomasetto C, Moog-Lutz C, et al. Presence of a new conserved domain in CART1, a novel member of the tumor necrosis factor receptor-associated protein family, which is expressed in breast carcinoma. J Biol Chem 1995; 270: 25715–25721.

    Article  PubMed  CAS  Google Scholar 

  96. Nakano H, Oshima H, Chung W, et al. TRAF5, an activator of NF-kB and putative signal transducer for the lymphotoxin-b receptor. J Biol Chem 1996; 271: 14661–14664.

    Article  PubMed  CAS  Google Scholar 

  97. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1. Nature 1996; 383: 443–446.

    Article  PubMed  CAS  Google Scholar 

  98. Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997; 388: 300–304.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liston, P., Young, S.S., Mackenzie, A.E. et al. Life and death decisions: the role of the IAPs in modulating programmed cell death. Apoptosis 2, 423–441 (1997). https://doi.org/10.1023/A:1026465926478

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026465926478

Navigation