Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice

Abstract

High mobility group 1 (HMG1) protein is an abundant component of all mammalian nuclei, and related proteins exist in all eukaryotes1,2. HMG1 binds linear DNA with moderate affinity and no sequence specificity3, but bends the double helix significantly on binding through the minor groove4. It binds with high affinity to DNA that is already sharply bent, such as linker DNA at the entry and exit of nucleosomes5,6,7; thus, it is considered a structural protein of chromatin. HMG1 is also recruited to DNA by interactions with proteins required for basal and regulated transcription8,9,10,11,12,13 and V(D)J recombination14,15. Here we generate mice harbouring deleted Hmg1. Hmg1–/– pups are born alive, but die within 24 hours due to hypoglycaemia. Hmg1-deficient mice survive for several days if given glucose parenterally, then waste away with pleiotropic defects (but no alteration in the immune repertoire). Cell lines lacking Hmg1 grow normally, but the activation of gene expression by the glucocorticoid receptor (GR, encoded by the gene Grl1) is impaired. Thus, Hmg1 is not essential for the overall organization of chromatin in the cell nucleus, but is critical for proper transcriptional control by specific transcription factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Replacement of Hmg1 by homologous recombination.
Figure 2: Hmg1–/– mice develop neonatal hypoglycaemia.
Figure 3: The absence of Hmg1 reduces the activity of GR in transfection assays.
Figure 4: Altered glucocorticoid responses in Hmg1–/– mice in vivo and ex vivo.

Similar content being viewed by others

References

  1. Bianchi, M.E. & Beltrame, M. Flexing DNA: HMG-box proteins and their partners. Am. J. Hum. Genet. 63, 1573 –1577 (1998).

    Article  CAS  Google Scholar 

  2. Bustin, M. & Reeves, R. High mobility group chromosomal proteins: Architectural components that facilitate chromatin function. Prog. Nucleic Acid Res. Mol. Biol. 54, 35– 100 (1996).

    Article  CAS  Google Scholar 

  3. Bianchi, M.E., Beltrame, M. & Paonessa, G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science 243, 1056– 1059 (1989).

    Article  CAS  Google Scholar 

  4. Pil, P.M., Chow, C.S. & Lippard, S.J. High-mobility-group 1 protein mediates DNA bending as determined by ring closures. Proc. Natl Acad. Sci. USA 90, 9465–9469 (1993).

    Article  CAS  Google Scholar 

  5. Travers, A.A., Ner, S.S. & Churchill, M.E.A. DNA chaperones: a solution to a persistence problem? Cell 77, 167–169 (1994).

    Article  CAS  Google Scholar 

  6. Ura, K., Nightingale, K. & Wolffe, A.P. Differential association of HMG1 and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression. EMBO J. 15, 4959– 4969 (1996).

    Article  CAS  Google Scholar 

  7. Falciola, L. et al. High mobility group 1 (HMG1) protein is not stably associated with the chromosomes of somatic cells. J. Cell Biol. 137, 19–26 (1997).

    Article  CAS  Google Scholar 

  8. Shykind, B.M., Kim, J. & Sharp, P.A. Activation of the TFIID-TFIIA complex with HMG-2. Genes Dev. 9, 1354–1365 (1995).

    Article  CAS  Google Scholar 

  9. Sutrias-Grau, M., Bianchi, M.E. & Bernués, J. HMG1 interacts with the core domain of human TBP and interferes with TFIIB within the pre-initiation complex. J. Biol. Chem. 274, 1628–1634 ( 1999).

    Article  CAS  Google Scholar 

  10. Boonyaaratanakornkit, V. et al. High mobility group chromatin proteins -1 and -2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol. Cell. Biol. 18, 4471–4487 ( 1998).

    Article  Google Scholar 

  11. Jayaraman, L. et al. High mobility group protein-1 (HMG1) is a unique activator of p53. Genes Dev. 12, 462– 472 (1998).

    Article  CAS  Google Scholar 

  12. Zwilling, S., König, H. & Wirth, T. High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J. 14, 1198–1208 ( 1995).

    Article  CAS  Google Scholar 

  13. Zappavigna, V., Falciola, L., Helmer Citterich, M., Mavilio, F. & Bianchi, M.E. HMG1 cooperates with HOX proteins in DNA binding and transcriptional activation. EMBO J. 15, 4981–4991 (1996).

    Article  CAS  Google Scholar 

  14. Agrawal, A. & Schatz, D.G. RAG1 and RAG2 form a stable post-cleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 89, 43–53 ( 1997).

    Article  CAS  Google Scholar 

  15. Kwon, J., Imbalzano, A.N., Matthews, A. & Oettinger, M.A. Accessibility of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. Mol. Cell 2, 829– 839 (1998).

    Article  CAS  Google Scholar 

  16. Vaccari, T., Beltrame, M., Ferrari, S. & Bianchi, M.E. Hmg4, a new member of the Hmg1/2 gene family. Genomics 49, 247–252 ( 1998).

    Article  CAS  Google Scholar 

  17. Reichardt, H.M. et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93, 531– 541 (1998).

    Article  CAS  Google Scholar 

  18. Cole, T.J. et al. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev. 9, 1608–1621 (1995).

    Article  CAS  Google Scholar 

  19. Ruppert, S. et al. Two genetically defined trans-acting loci coordinately regulate overlapping sets of liver-specific genes. Cell 61, 895–904 (1990).

    Article  CAS  Google Scholar 

  20. Ferrari, S., Ronfani, L., Calogero, S. & Bianchi, M.E. The mouse gene coding for high mobility group 1 protein (HMG1). J. Biol. Chem. 269, 28803–28808 (1994).

    CAS  PubMed  Google Scholar 

  21. Chomczynski, P. & Sacchi, N. Single-step method for RNA isolation by acid guanidinium thiocyanate-phenol-choloroform extraction. Anal. Biochem. 162, 156– 159 (1987).

    Article  CAS  Google Scholar 

  22. Yoo-Warren, H. et al. Identification of a DNA clone to phosphoenolpyruvate carboxykinase (GTP) from rat cytosol. Alterations in phosphoenolpyruvate carboxykinase RNA levels detectable by hybridization. J. Biol. Chem. 256, 10224–10227 (1981).

    CAS  PubMed  Google Scholar 

  23. Noda, C., Tomomura, M., Nakamura, T. & Ichihara, A. Molecular cloning of DNA complementary to mRNA of rat liver serine dehydratase. Biochem. Biophys. Res. Commun. 132, 232 –239 (1985).

    Article  CAS  Google Scholar 

  24. Wagner, B.L., Norris, J.D., Knotts, T.A., Weigel, N.L. & McDonnell, D.P. The nuclear corepressors NCoR and SMRT are key regulators of both ligand- and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor. Mol. Cell. Biol. 18, 1369–1378 (1998).

    Article  CAS  Google Scholar 

  25. Reue, K., Leff, T. & Breslow, J.L. Human apolipoprotein CIII gene expression is regulated by positive and negative cis-acting elements and tissue-specific protein factors. J. Biol. Chem. 263, 6857– 6864 (1988).

    CAS  PubMed  Google Scholar 

  26. Swat, W., Ignatowicz, L. & Kisielow, P. Detection of apoptosis of immature CD4+8+ thymocytes by flow cytometry. J. Immunol. Methods 137, 79–87 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Bouvier and F. Watrin for generating ES mutant clones; A. Plück and the EMBL Transgenic Facility for generating Hmg1 +/- mice on a pure 129Sv genetic background; M. Pezzo for mouse blood tests; A. De Luigi and M.G. De Simoni for corticosterone measurements; L. Ronfani for control experiments; T. Ravasi for establishing cell lines; F. Duranti for personal support; and D. Edwards, F. Barbetti, L. Falqui, P. Dellabona, G. Ferrari, F. Tronche and G. Schütz for help with reagents and suggestions. S.C. was a recipient of fellowships from Universita' di Milano and Centro Italiano Biotecnologie. Supported by Associazione Italiana Ricerca sul Cancro, Ministero dell'Universita' e della Ricerca Scientifica and the European Union (grant FMRX-CT97-0109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco E. Bianchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calogero, S., Grassi, F., Aguzzi, A. et al. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat Genet 22, 276–280 (1999). https://doi.org/10.1038/10338

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10338

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing