Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL

Abstract

Phototransduction in invertebrate microvillar photoreceptors is thought to be mediated by the activation of phospholipase C (PLC), but how this leads to gating of the light-sensitive channels is unknown1,2. Most attention has focused on inositol-1,4,5-trisphosphate, a second messenger produced by PLC from phosphatidylinositol-4,5-bisphosphate; however, PLC also generates diacylglycerol, a potential precursor for several polyunsaturated fatty acids, such as arachidonic acid and linolenic acid. Here we show that both of these fatty acids reversibly activate native light-sensitive channels (transient receptor potential (TRP) and TRP-like (TRPL)) in Drosophila photoreceptors as well as recombinant TRPL channels expressed in Drosophila S2 cells. Recombinant channels are activated rapidly in both whole-cell recordings and inside-out patches, with a half-maximal effector concentration for linolenic acid of 10 µM. Four different lipoxygenase inhibitors, which might be expected to lead to build-up of endogenous fatty acids, also activate native TRP and TRPL channels in intact photoreceptors. As arachidonic acid may not be found in Drosophila, we suggest that another polyunsaturated fatty acid, such as linolenic acid, may be a messenger of excitation in Drosophila photoreceptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of light-sensitive channels by linolenic acid (LNA).
Figure 2: Activation of recombinant TRPL channels by linolenic acid (LNA).
Figure 3: Activation of photoreceptors by lipoxygenase inhibitors.
Figure 4: CDC is a new inhibitor of TRPL channels.

Similar content being viewed by others

References

  1. Hardie, R. C. & Minke, B. Phosphoinositide-mediated phototransduction in Drosophila photoreceptors: the role of Ca2+ and trp. Cell Calcium 18, 256–274 (1995).

    Article  CAS  Google Scholar 

  2. Ranganathan, R., Malicki, D. M. & Zuker, C. S. Signal transduction in Drosophila photoreceptors. Annu. Rev. Neurosci. 18, 283–317 (1995).

    Article  CAS  Google Scholar 

  3. Berridge, M. J. Inositol trisphosphate and calcium signalling. Nature 361, 315–325 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Montell, C. & Rubin, G. M. Molecular characterization of Drosophila trp locus, a putative integral membrane protein required for phototransduction. Neuron 2, 1313–1323 (1989).

    Article  CAS  Google Scholar 

  5. Phillips, A. M., Bull, A. & Kelly, L. E. Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron 8, 631–642 (1992).

    Article  CAS  Google Scholar 

  6. Hardie, R. C. & Minke, B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8, 643–651 (1992).

    Article  CAS  Google Scholar 

  7. Niemeyer, B. A., Suzuki, E., Scott, K., Jalink, K. & Zuker, C. S. The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell 85, 651–659 (1996).

    Article  CAS  Google Scholar 

  8. Reuss, H., Mojet, M. H., Chyb, S. & Hardie, R. C. In vivo analysis of the Drosophila light-sensitive channels, TRP and TRPL. Neuron 19, 1249–1259 (1997).

    Article  CAS  Google Scholar 

  9. Petersen, C. C. H., Berridge, M. J., Borgese, M. F. & Bennett, D. L. Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem. J. 311, 41–44 (1995).

    Article  CAS  Google Scholar 

  10. Wes, P. D. et al. TRPC1, a human homolog of a Drosophila store-operated channel. Proc. Natl Acad. Sci. USA 92, 9652–9656 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Birnbaumer, L. et al. On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc. Natl Acad. Sci. USA 93, 15195–15202 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Smith, D. P. et al. Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein-kinase-C. Science 254, 1478–1484 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Hardie, R. C. et al. Protein kinase C is required for light adaptation in Drosophila photoreceptors. Nature 363, 634–637 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Yoshioka, T. et al. Evidence that arachidonic acid is deficient in phosphatidylinositol of Drosophila heads. J. Biochem. 98, 657–662 (1986).

    Article  Google Scholar 

  15. Stark, W. S., Lin, T. N., Brackhahn, D., Christianson, J. S. & Sun, G. Y. Fatty-acids in the lipids of Drosophila heads — effects of visual mutants, carotenoid deprivation and dietary fatty-acids. Lipids 28, 345–350 (1993).

    Article  CAS  Google Scholar 

  16. Meves, H. Modulation of ion channels by arachidonic acid. Prog. Neurobiol. 43, 175–186 (1994).

    Article  CAS  Google Scholar 

  17. Pearn, M. T., Randall, L. L., Shortridge, R. D., Burg, M. G. & Pak, W. L. Molecular, biochemical, and electrophysiological characterization of Drosophila norpA mutants. J. Biol. Chem. 271, 4937–4945 (1996).

    Article  CAS  Google Scholar 

  18. Scott, K., Becker, A., Sun, Y., Hardy, R. & Zuker, C. G(q alpha) protein function in vivo: genetic dissection of its role in photoreceptor cell physiology. Neuron 15, 919–927 (1995).

    Article  CAS  Google Scholar 

  19. Shim, K. et al. Control of Drosophila retinoid and fatty acid binding glycoprotein expression by retinoids and retinoic acid: northern, western and immunocytochemical analyses. Exp. Eye Res. 65, 717–727 (1997).

    Article  CAS  Google Scholar 

  20. Hardie, R. C., Reuss, H., Lansdell, S. J. & Millar, N. S. Functional equivalence of native light-sensitive channels in the Drosophila trp301 mutant and TRPL cation channels expressed in a stably transfected Drosophila cell line. Cell Calcium 21, 431–440 (1997).

    Article  CAS  Google Scholar 

  21. Karnovsky, M. J., Kleinfeld, A. M., Hoover, R. L. & Klausner, R. D. The concept of lipid domains in membranes. J. Cell Biol. 94, 1–6 (1982).

    Article  CAS  Google Scholar 

  22. Anderson, M. P. & Welsh, M. J. Fatty acids inhibit apical membrane chloride channels in airway epithelia. Proc. Natl Acad. Sci. USA 87, 7334–7338 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Acharya, J. K., Jalink, K., Hardy, R. W., Hartenstein, V. & Zuker, C. S. InsP3receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron 18, 881–887 (1997).

    Article  CAS  Google Scholar 

  24. Dong, Y., Kunze, D. L., Vaca, L. & Schilling, W. P. Ins(1,4,5)P3activates Drosophila cation channel Trpl in recombinant baculovirus-infected Sf9 insect cells. Am. J. Physiol. Cell Physiol. 269, C1332–C1339 (1995).

    Article  CAS  Google Scholar 

  25. Zimmer, S., Trost, C., Cavalie, A., Philipp, S. & Flockerzi, V. The trpl protein is a Ca2+-calmodulin activated non-selective cation (CAN) channel. Naunyn-Schmiedebergs Arch. Pharmacol. 355, 238 (1997).

    Google Scholar 

  26. Obukhov, A. G. et al. Direct activation of trpl cation channels by G alpha11 subunits. EMBO J. 15, 5833–5838 (1996).

    Article  CAS  Google Scholar 

  27. Van der Zee, L., Nelemans, A. & Den Hertog, A. Arachidonic acid is functioning as a second messenger in activating the Ca2+ entry process on H1-histaminoceptor stimulation in DDT1 MF-2 cells. Biochem. J. 305, 859–864 (1995).

    Article  CAS  Google Scholar 

  28. Shuttleworth, T. J. Arachidonic-acid activates the noncapacitative entry of Ca2+ during [Ca2+]ioscillations. J. Biol. Chem. 271, 21720–21725 (1996).

    Article  CAS  Google Scholar 

  29. Hardie, R. C. Whole-cell recordings of the light-induced current in Drosophila photoreceptors: evidence for feedback by calcium permeating the light sensitive channels. Proc. R. Soc. Lond. B 245, 203–210 (1991).

    Article  ADS  Google Scholar 

  30. Hardie, R. C. INDO-1 measurements of absolute resting and light-induced Ca2+ concentration in Drosophila photoreceptors. J. Neurosci. 16, 2924–2933 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Taylor and Z. Selinger for discussions, and L. Kelly and W. A. Harris for discussions and comments on an earlier version of this paper. The work was supported by the Wellcome Trust and the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. Hardie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chyb, S., Raghu, P. & Hardie, R. Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 397, 255–259 (1999). https://doi.org/10.1038/16703

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16703

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing