Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cholesterol modulates activity of calcium-dependent ATPase of the sarcoplasmic reticulum

Abstract

BIOMEMBRANES consist of an asymmetric lipid bilayer matrix into which and around which the various proteins are situated. The proteins may be attached to the outside of the lipid bilayer (extrinsic proteins), but in many cases the proteins (intrinsic proteins) are embedded within, and can span, the bilayer. Associated with this is the idea that in many cases the lipid matrix is in a fluid condition in which the lipids are essentially above their transition temperature (Tc) and able to diffuse along the bilayer length. The perturbation introduced into the lipid bilayer by the presence of an intrinsic protein has recently been discussed2,3. Some workers4,5 have suggested that intrinsic proteins, for example the Ca2+-ATPase of the sarcoplasmic reticulum, carry with them, even when excess bulk fluid lipid occurs, a shell of immobilised lipid, referred to as an annulus, which controls the enzyme activity. The shell is said to exclude cholesterol so that cholesterol molecules do not influence the enzyme activity. We report here the use of cholesterol-enriched liposomes to reversibly vary the content of cholesterol in the sarcoplasmic membranes. We show in contrast to the previous work that as the cholesterol content of the membrane varies so does the activity of the Ca2+-ATPase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chapman, D. Q. Rev. Biophys. 8, 185–235 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Jost, P. D., Griffith, O. H., Capaldi, R. A. & Vanderkooi, G. Proc. natn. Acad. Sci. U.S.A. 70, 480–484 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Cornell, B. A., Sacre, M. M., Peel, W. E. & Chapman, D. FEBS Lett. 90, 29–35 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. Hesketh, T. R. et al. Biochemistry 15, 4145–4151 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. Warren, G. B., Houslay, M. D., Metcalfe, J. C. & Birdsall, N. J. M. Nature 255, 684–687 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Warren, G. B., Toon, P. A., Birdsall, N.J.M., Lee, A. G. & Metcalfe, J. C. Proc. natn. Acad. Sci. U.S.A. 71, 622–628 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Bruckdorfer, R. K., Graham, J. M. & Green, C. Eur. J. Biochem. 4, 512–518 (1968).

    Article  CAS  PubMed  Google Scholar 

  8. Hope, M. J., Bruckdorfer, R. K., Hart, C. A. & Lucy, J.A. Biochem. J. 166, 255–263 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martonosi, A. Biochem. biophys. Res. Commun. 36, 1039–1044 (1969).

    Article  CAS  PubMed  Google Scholar 

  10. Meissner, G. & Fleischer, S. Biochim. biophys. Acta. 241, 356–378 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. Hasselbach, W. Prog. Biophys. molec. Biol. 14, 167–222 (1964).

    Article  CAS  Google Scholar 

  12. Weber, A. in Curr. Topics in Bioenergetics Vol. 1 (ed. Sanadi, D.) 203–254 (Academic, New York, 1966).

    Google Scholar 

  13. Thorley-Lawson, D. A. & Green, N. M. Eur. J. Biochem. 40, 403–413 (1973).

    Article  CAS  PubMed  Google Scholar 

  14. Martonosi, A., Donley, J. & Halpin, R. A. J. biol. Chem. 243, 61–70 (1968).

    CAS  PubMed  Google Scholar 

  15. Seraydarian, K. & Mommaerts, W. F. H. M. J. Cell Biol. 26, 641–656 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rose, H. G. & Oklander, M. J. Lipid Res. 6, 428–431 (1965).

    CAS  PubMed  Google Scholar 

  17. King, E. J. Biochem. J. 26, 292–297 (1932).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  19. Vigo, C., Goni, F. M., Quinn, P. J. & Chapman, D. Biochim. biophys. Acta. 508, 1–14 (1978).

    Article  CAS  PubMed  Google Scholar 

  20. Ladbrooke, B. D., Williams, R. M. & Chapman, D. Biochim. biophys. Acta 150, 333–340 (1968).

    Article  CAS  PubMed  Google Scholar 

  21. De Kruyff, B., Demel, R. A. & van Deenen, L. L. M. Biochim. biophys. Acta 255, 331–347 (1971).

    Article  Google Scholar 

  22. Davis, D. G., Inesi, G. & Gulik-Krcywicki, T. Biochemistry 15, 1271–1276 (1976).

    Article  CAS  PubMed  Google Scholar 

  23. Martonosi, M. A. FEBS Lett. 47, 327–329 (1974).

    Article  CAS  PubMed  Google Scholar 

  24. Dean, W. L. & Tanford, C. J. biol. Chem. 252, 3551–3553 (1977).

    CAS  PubMed  Google Scholar 

  25. Moore, B. M., Lentz, B. R. & Meissner, G. Biochemistry 17, 5248–5255 (1978).

    Article  CAS  PubMed  Google Scholar 

  26. Chapman, D., Gomez-Fernandez, J. C. & Goni, F. M. FEBS Lett. 98, 211–223 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MADDEN, T., QUINN, P. & CHAPMAN, D. Cholesterol modulates activity of calcium-dependent ATPase of the sarcoplasmic reticulum. Nature 279, 538–541 (1979). https://doi.org/10.1038/279538a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/279538a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing