Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structural basis of the activation of Ras by Sos

Abstract

The crystal structure of human H-Ras complexed with the Ras guanine-nucleotide-exchange-factor region of the Son of sevenless (Sos) protein has been determined at 2.8 Å resolution. The normally tight interaction of nucleotides with Ras is disrupted by Sos in two ways. First, the insertion into Ras of an α-helix from Sos results in the displacement of the Switch 1 region of Ras, opening up the nucleotide-binding site. Second, side chains presented by this helix and by a distorted conformation of the Switch 2 region of Ras alter the chemical environment of the binding site for the phosphate groups of the nucleotide and the associated magnesium ion, so that their binding is no longer favoured. Sos does not impede the binding sites for the base and the ribose of GTP or GDP, so the Ras–Sos complex adopts a structure that allows nucleotide release and rebinding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment of Ras-binding exchange factors with residue numbers of human (hu) Sos1 indicated.
Figure 2: The complex of human H-Ras with the exchange-factor region of human Sos1.
Figure 3: Interface surfaces of the Ras–Sos complex.
Figure 4: A schematic representation of the differences in the Switch 2 regions of a Ras–GTP analogue and Ras–Sos.
Figure 5: Interactions at the nucleotide-binding site.
Figure 6: Comparison of Ras complexed with Sos and a GTP analogue.

Similar content being viewed by others

References

  1. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Boguski, M. S. & McCormick, F. Proteins regulating Ras and its relatives. Nature 366, 643–654 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Medema, R. H., de Vries-Smits, A. M., van der Zon, G. C. M., Maassen, J. A. & Bos, J. L. Ras activation by insulin and epidermal growth factor through enhanced exchange of guanine nucleotides on p21ras. Mol. Cell. Biol. 13, 155–162 (1993).

    Article  CAS  Google Scholar 

  4. Buday, L. & Downward, J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73, 611–620 (1993).

    Article  CAS  Google Scholar 

  5. Gale, N. W., Kaplan, S., Lowenstein, E. J., Schlessinger, J. & Bar-Sagi, D. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 363, 88–92 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Bar-Sagi, D. The Sos (Son of sevenless) protein. Trends Endocrin. Metab. 5, 165–169 (1994).

    Article  CAS  Google Scholar 

  7. Schlessinger, J. How receptor tyrosine kinases activate Ras. Trends Biochem. Sci. 18, 273–275 (1994).

    Article  Google Scholar 

  8. Yu, H. & Schreiber, S. L. Structure of guanine-nucleotide-exchange factor human Mss4 and identification of its Rab-interacting surface. Nature 376, 788–791 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Mossessova, E., Gulbis, J. M. & Goldberg, J. Structure of the guanine nucleotide exchange factor Sec7 domain of human Arno and analysis of the interaction with ARF GTPase. Cell 92, 415–423 (1998).

    Article  CAS  Google Scholar 

  10. Cherfils, J. et al. Structure of the Sec7 domain of the Arf exchange factor ARNO. Nature 392, 101–105 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Renault, L. et al. The 1.7 Å crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392, 97–101 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Wang, Y., Jiang, Y., Meyering-Voss, M., Sprinzl, M. & Sigler, P. B. Crystal structure of the EF-Tu·EF-Ts complex from Thermus thermophilus. Nat. Struct. Biol. 4, 650–656 (1997).

    Article  CAS  Google Scholar 

  13. Kawashima, T., Berthet-Colominas, C., Wulff, M., Cusack, S. & Leberman, R. The structure of the Escherichia coli EF-Tu-EF-Ts complex at 2.5 Å resolution. Nature 379, 511–518 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  15. Chardin, P. et al. Human Sos 1: A gunaine nucleotide exchange factor for Ras that binds to GRB2. Science 260, 1338–1343 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Lenzen, C., Cool, R. H., Prinz, H., Kuhlmann, J. & Wittinghofer, A. Kinetic analysis by fluorescence of the interaction between Ras and the catalytic domain of the guanine nucleotide exchange factor Cdc25Mm Biochemistry 37, 7420–7430 (1998).

    Article  CAS  Google Scholar 

  17. Lai, C.-C., Boguski, M., Broek, D. & Powers, S. Influence of guanine nucleotides on complex formation between Ras and Cdc25 proteins. Mol. Cell. Biol. 13, 1345–1352 (1993).

    Article  CAS  Google Scholar 

  18. Mistou, M. Y. et al. Mutations of H-Ras p21 that define important regions for the molecular mechanism of the SDC25 C-domain, a guanine nucleotide dissociation stimulator. EMBO J. 11, 2391–2397 (1992).

    Article  CAS  Google Scholar 

  19. Milburn, M. V. et al. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939–945 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Jurnak, F. Structure of the GDP domainof EF-Tu and location of the amino acids homologous to ras oncogene proteins. Science 230, 32–36 (1985).

    Article  ADS  CAS  Google Scholar 

  21. 1. Powers, S., O'Neill, K. & Wigler, M. Dominant yeast and mammalian Ras mutants that interfere with CDC25-dependent activation of wild-type Ras in Saccharomyces cerevisiae. Mol. Cell. Biol. 9, 390–395 (1989).

    Article  CAS  Google Scholar 

  22. Haney, S. A. & Broach, J. R. Cdc25p, the guanine nucleotide exchange factor for the Ras proteins of Saccharomyces cerevisiae, promotes exchange by stabilizing ras in a nucleotide free state. J. Biol. Chem. 269, 16541–16548 (1994).

    CAS  PubMed  Google Scholar 

  23. Klebe, C., Prinz, H., Wittinghofer, A. & Goody, R. S. The kinetic mechanism of Ran-nucleotide exchange catalyzed by RCC1. Biochemistry 34, 12543–12552 (1995).

    Article  CAS  Google Scholar 

  24. Verrotti, A. C. et al. Ras residues that are distant from the GDP binding site play a critical role in dissociation factor-stimulated release of GDP. EMBO J. 11, 2855–2862 (1992).

    Article  CAS  Google Scholar 

  25. Segal, M., Willumsen, B. M. & Levitzki, A. Residues crucial for Ras interaction with GDP-GTP exchangers. Proc. Natl Acad. Sci. USA 90, 5564–5568 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Mosteller, R. D., Han, J. & Broek, D. Identification of residues of the H-Ras protein critical for functional interaction with guanine nucleotide exchange factors. Mol. Cell. Biol. 14, 1104–1112 (1994).

    Article  CAS  Google Scholar 

  27. Segal, M., Marbach, I., Willumsen, B. M. & Levitzki, A. Two distinct regions of Ras participate in functional interaction with GDP-GTP exchangers. Eur. J. Biochem. 228, 96–101 (1995).

    Article  CAS  Google Scholar 

  28. Leonardsen, L., DeClue, J. E., Lybaek, H., Lowy, D. R. & Willumsen, B. M. Rasp21 sequences opposite the nucleotide binding pocket are required for GRF-mediated nucleotide release. Oncogene 13, 2177–2187 (1996).

    CAS  PubMed  Google Scholar 

  29. Crechet, J.-B., Bernardi, A. & Parmeggiani, A. Distal switch II region of Ras2p is required for interaction with guanine nucleotide exchange factor. J. Biol. Chem. 271, 17234–17240 (1996).

    Article  CAS  Google Scholar 

  30. Quilliam, L. A. et al. Involvement of the switch 2 domain of Ras in its interaction with guanine nucleotide exchange factors. J. Biol. Chem. 271, 11076–11082 (1996).

    Article  CAS  Google Scholar 

  31. 1. Feig, L. A. & Cooper, G. M. Inhibition of NIH 3T3 cell proliferation by a mutant Ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8, 3235–3243 (1988).

    Article  CAS  Google Scholar 

  32. 2. Chen, S.-Y., Huff, S. Y., Lai, C.-C., Der, C. J. & Powers, S. Ras-15A protein shares highly similar dominant-negative biological properties with Ras-17N and forms a stable, guanine-nucleotide resistant complex with CDC25 exchange factor. Oncogene 9, 2691–2698 (1994).

    CAS  PubMed  Google Scholar 

  33. Powers, S., Gonzales, E., Christensen, T., Cubert, J. & Broek, D. Functional cloning of Bud5, a Cdc25-related gene from S. cerevisiae that can suppress a dominant-negative Ras2 mutant. Cell 65, 1225–1231 (1991).

    Article  CAS  Google Scholar 

  34. Westbrook, E. M. & Naday, I. Charge-coupled device-based area detectors. Methods Enzymol. 276, 244–268 (1997).

    Article  CAS  Google Scholar 

  35. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation model Mehtods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  36. CCP4 Suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  37. Cowtan, K. Joint CCP4 and ESF-EACBM Newslett. Protein Crystallogr. 31, 34–38 (1994).

    Google Scholar 

  38. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  39. Pai, E. F. et al. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351–2359 (1990).

    Article  CAS  Google Scholar 

  40. Bernstein, F. C. et al. The protein data bank: a computer-based archival file for macromolecular structures. Arch. Biochem. Biophys. 185, 584–591 (1978).

    Article  CAS  Google Scholar 

  41. 1. Brünger, A. T. et al. Crystallography and NMR system (CNS): A new software suite for macromolecular structure determination. Acta Crystallogr. D (in the press).

  42. 2. Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  43. 3. Brünger, A. T., Adams, P. D. & Rice, L. M. New applications of simulated annealing in X-ray crystallography and solution NMR. Structure 5, 325–336 (1997).

    Article  Google Scholar 

  44. 4. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  45. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  46. Pai, E. F. et al. Structure of the guanine-nucleotide-binding domain of Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341, 209–214 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Leighton and M. Uy for technical assistance; J. Bonanno, S. K. Burley, R.H. Chen, X. Chen, E. Conti, S. Corbalan-Garcia, D. Galron, B. Hall, M. Huse, S. Jacques, D. Jeruzalmi, C.-H. Lee, S. Soisson, H. Yamaguchi, S.-S. Yang and Y. Zhang for advice and help; L. Berman, R. Sweet, the staff of NSLS and CHESS for help with synchrotron data collection; and A. Wittinghofer and R. H. Cool for sharing a manuscript prior to publication. P.A.B.-S. is supported by grants for the Cystic Fibrosis Foundation and the NIH. D.B.-S. acknowledges grant support from the NIH.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boriack-Sjodin, P., Margarit, S., Bar-Sagi, D. et al. The structural basis of the activation of Ras by Sos. Nature 394, 337–343 (1998). https://doi.org/10.1038/28548

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28548

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing