Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus

Abstract

The hippocampus, as well as a variety of other brain regions, is known to receive a diffuse projection of noradrenaline (NA) containing fibres which originates in the brain stem1–4. Although there is considerable evidence for the involvement of this system in a variety of behaviours5–7, the precise cellular actions of NA are poorly understood. Early studies emphasized the direct inhibitory effects of NA8–12; more recent experiments have shown that at several sites, NA, or stimulation of NA-containing afferents, can also facilitate excitatory synaptic responses13–18. This has led to the concept that NA increases the ‘signal-to-noise’ ratio of neurones13, acting as an ‘enabling’ device4 which allows cells to respond more briskly to conventional synaptic excitation. In the olfactory bulb, NA reduces inhibitory postsyn-aptic potentials by a presynaptic action19, which could contribute to enhanced excitatory synaptic responses. However, in other systems, NA has been reported to enhance excitatory responses to iontophoretically applied transmitters, and it was proposed that NA increases the sensitivity of the neurone to these excitatory transmitters13–15. We report here experiments that could explain such direct effects. We have found that NA and cyclic AMP block the Ca2+-activated K+ conductance in hippocampal pyramidal cells and that this blockade occurs at a step subsequent to the entry of Ca2+ into the neurone. As a consequence, the spike frequency adaptation or accommodation which normally occurs with depolarizing stimuli is severely reduced. Thus, NA greatly increases the number of spikes elicited by a depolarizing stimulus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pickel, V., Segal, M. & Bloom, F. E. J. comp. Neurol. 155, 15–42 (1974).

    Article  CAS  Google Scholar 

  2. Nakamura, S. & Iwama, K. Brain Res. 99, 372–376 (1975).

    Article  CAS  Google Scholar 

  3. Loy, R., Koziell, D. A., Lindsey, J. D. & Moore, R. Y. J. comp. Neurol. 189, 699–710 (1980).

    Article  CAS  Google Scholar 

  4. Moore, R. Y. & Bloom, F. E. A. Rev. Neurosci. 2, 113–168 (1979).

    Article  CAS  Google Scholar 

  5. Mason, S. T. Prog. Neurobiol. 16, 263–303 (1981).

    Article  CAS  Google Scholar 

  6. Aston-Jones, G. & Bloom, F. E. Neuroscience 1, 876–886 (1981).

    Article  CAS  Google Scholar 

  7. Aston-Jones, G. & Bloom, F. E. Neuroscience 1, 887–900 (1981).

    Article  CAS  Google Scholar 

  8. Bloom, F. E. in Psychopharmacology–A 20 Year Progress Report (eds Lipton, M. E., Killam, K. C. & Di Mascio, A.) 131–142 (Raven, New York, 1978).

    Google Scholar 

  9. Hoffer, B. J., Siggins, G. R. & Bloom, F. E. Brain Res. 25, 523–534 (1971).

    Article  CAS  Google Scholar 

  10. Segal, M. & Bloom, F. E. Brain Res. 107, 513–525 (1976).

    Article  CAS  Google Scholar 

  11. Segal, M. Brain Res. 206, 107–128 (1981).

    Article  CAS  Google Scholar 

  12. Langmoen, I. A., Segal, M. & Anderson, P. Brain Res. 208, 349–362 (1981).

    Article  CAS  Google Scholar 

  13. Woodward, D. J., Moises, H. C., Waterhouse, B. D., Hoffer, B. J. & Freedman, R. Fedn Proc. 38, 2109–2116 (1979).

    CAS  Google Scholar 

  14. Rogawski, M. A. & Aghajanian, G. K. Nature 287, 731–734 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Waterhouse, B. D., Moises, H. C. & Woodward, D. J. Neuropharmacology 20, 907–920 (1981).

    Article  CAS  Google Scholar 

  16. Kayama, Y., Negi, T., Sugitani, M. & Iwama, K. Neuroscience 7, 655–666 (1982).

    Article  CAS  Google Scholar 

  17. Mueller, A. L., Hoffer, B. J. & Dunwiddie, T. V. Brain Res. 214, 113–126 (1981).

    Article  CAS  Google Scholar 

  18. Moises, H. C., Waterhouse, B. D. & Woodward, D. J. Brain Res. 222, 43–64 (1981).

    Article  CAS  Google Scholar 

  19. Jahr, C. E. & Nicoll, R. A. Nature 297, 227–229 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Nicoll, R. A. & Alger, B. E. J. Neurosci. Meth. 4, 153–156 (1981).

    Article  CAS  Google Scholar 

  21. Hotson, J. R. & Prince, D. A. J. Neurophysiol. 43, 409–419 (1980).

    Article  CAS  Google Scholar 

  22. Alger, B. E. & Nicoll, R. A. Science 210, 1122–1124 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Schwartzkroin, P. A. & Stafstrom, C. E. Science 210, 1125–1126 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Horn, J. P. & McAfee, D. A. J. Physiol., Lond. 301, 191–204 (1980).

    Article  CAS  Google Scholar 

  25. Dunlap, K. & Fischbach, G. D. J. Physiol., Lond. 317, 519–535 (1981).

    Article  CAS  Google Scholar 

  26. Benardo, L. S. & Prince, D. A. J. Neurosci. 2, 415–423 (1982).

    Article  CAS  Google Scholar 

  27. Seamon, K. & Daly, J. W. J. biol. Chem. 256, 9799–9801 (1981).

    CAS  PubMed  Google Scholar 

  28. Klein, M. & Kandel, E. R. Proc. natn. Acad. Sci. U.S.A. 77, 6912–6916 (1980).

    Article  ADS  CAS  Google Scholar 

  29. Deterre, P., Paupardin-Tritsch, D., Bockaert, J. & Gerschenfeld, H. M. Nature 290, 783–785 (1981).

    Article  ADS  CAS  Google Scholar 

  30. Adams, W. B. & Levitan, I. B. Proc. natn. Acad. Sci. U.S.A. 79, 3877–3880 (1982).

    Article  ADS  CAS  Google Scholar 

  31. Kaczmarek, L. R. & Strumwasser, F. Neurosci. Abstr. 7, 932 (1981).

    Google Scholar 

  32. DePeyer, J. E., Cachelin, A. B., Levitan, I. B. & Reuter, H. Proc. natn. Acad. Sci. U.S.A. 79, 4207–4211 (1982).

    Article  ADS  CAS  Google Scholar 

  33. Livingstone, M. S. & Hubel, D. H. Nature 291, 554–561 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madison, D., Nicoll, R. Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299, 636–638 (1982). https://doi.org/10.1038/299636a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299636a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing