Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle

Abstract

Action potentials in many excitable cells are followed by a prolonged afterhyperpolarization1–3 that modulates repetitive firing2,4,5. Although it is established that the afterhyperpolarization is produced by Ca-activated K+ currents1,2,4, the basis of these currents is not known. The large conductance (250 pS) Ca-activated K+ channel (BK channel6,7) is not a major contributor to the afterhyperpolarization in non-innervated skeletal muscle and some nerve cells, because apamin, a neurotoxic component of bee venom, abolishes the afterhyperpolarization8–11 but does not block BK channels9, and 5 mM extracellular tetraethylammoniumion (TEA) blocks BK channels9,12 but does not reduce the afterhyperpolarization2,4,8–11. We now report single-channel currents from small conductance (10–14 pS) Ca-activated K+ channels (SK channels) with the necessary properties to account for the afterhyperpolarization. SK channels are blocked by apamin but not by 5 mM external TEA (TEAo). They are also highly Ca-sensitive at the negative membrane potentials associated with the afterhyperpolarization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meech, R. A. Rev. Biophys. Bioengng 7, 1–18 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Barrett, J. N., Barrett, E. F. & Dribin, L. B. Devl Biol. 82, 258–266 (1981).

    Article  CAS  Google Scholar 

  3. Schmid-Antomarchi, H. et al. Proc. natn. Acad. Sci. U.S.A. 82, 2188–2191 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Barrett, J. N. & Barrett, E. F. J. Physiol, Lond. 255, 737–774 (1976).

    Article  CAS  Google Scholar 

  5. Kawai, T. & Watanabe, M. Br. J. Pharmac. 87, 225–232 (1986).

    Article  CAS  Google Scholar 

  6. Marty, A. Nature 291, 497–500 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Pallota, B. S., Magleby, K. L. & Barrett, J. N. Nature 293, 471–474 (1981).

    Article  ADS  Google Scholar 

  8. Hugues, M., Romey, G., Duval, D., Vincent, J. P. & Lazdunski, M. Proc. natn. Acad. Sci. U.S.A. 79, 1308–1312 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Romey, G. & Lazdunski, M. Biochem. biophys. Res. Commun. 118, 669–674 (1984).

    Article  CAS  Google Scholar 

  10. Romey, G., Hughes, M., Schmid-Antomarchi, H. & Lazdunski, M. J. Physiol., Paris 79, 259–264 (1984).

    CAS  Google Scholar 

  11. Pennefather, P., Lancaster, B., Adams, P. R. & Nicoll, R. A. Proc. natn. Acad. Sci. U.S.A. 82, 3040–3044 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Blatz, A. L. & Magleby, K. L. J. gen. Physiol. 84, 1–23 (1984).

    Article  CAS  Google Scholar 

  13. Barrett, J. N., Magleby, K. L. & Pallotta, B. S. J. Physiol., Lond. 331, 211–230 (1982).

    Article  CAS  Google Scholar 

  14. Moczlydlowski, E. & Latorre, R. J. gen. Physiol. 82, 511–542 (1983).

    Article  Google Scholar 

  15. Methfessel, C. & Boheim, G. Biophys. Struct. Mech. 9, 35–60 (1982).

    Article  CAS  Google Scholar 

  16. Petersen, O. H. & Maruyama, Y. Nature 307, 693–696 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Burgess, G. M., Claret, M. & Jenkinson, D. H. J. Physiol., Lond. 317, 67–90 (1981).

    Article  CAS  Google Scholar 

  18. Hamill, O. P. J. Physiol., Lond. 319, 97–98P (1981).

    Google Scholar 

  19. Lux, H. D., Neher, E. & Marty, A. Pflügers Arch. ges. Physiol. 389, 293–295 (1981).

    Article  CAS  Google Scholar 

  20. Fosset, M., Schmid-Antomarchi, H., Hugues, M., Romey, G. & Lazdunski, M. Proc. natn. Acad. Sci. U.S.A. 81, 7228–7232 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Banks, B. E. C. et al. Nature 282, 415–417 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Habermann, E. Pharmac. Theor. 25, 255–270 (1984).

    Article  CAS  Google Scholar 

  23. Renaud, J. et al. Nature 319, 678–680 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blatz, A., Magleby, K. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323, 718–720 (1986). https://doi.org/10.1038/323718a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323718a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing