Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy

Abstract

The cardiac response to increased work includes a reactivation of fetal genes. The response to a decrease in cardiac work is not known. Such information is of clinical interest, because mechanical unloading can improve the functional capacity of the failing heart. We compared here the patterns of gene expression in unloaded rat heart with those in hypertrophied rat heart. Both conditions induced a re-expression of growth factors and proto-oncogenes, and a downregulation of the 'adult' isoforms, but not of the 'fetal' isoforms, of proteins regulating myocardial energetics. Therefore, opposite changes in cardiac workload in vivo induce similar patterns of gene response. Reactivation of fetal genes may underlie the functional improvement of an unloaded failing heart.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of TGFβ1, TGFβ3 and c-fos transcripts.
Figure 2: Expression of MHC, GLUT and CPT I mRNA isoforms.
Figure 3: Western immunoanalysis of GLUT1 and GLUT4 proteins obtained from control (C) and transplanted hearts (T) excised 1 and 7 days (d) after transplantation.
Figure 4: Levels of GLUT4 (a) and muscle-specific CPT I (b) mRNA in controls, hearts unloaded for 48 hours, and unloaded hearts after reloading in a working heart apparatus for 60 min.
Figure 5

Similar content being viewed by others

References

  1. Komuro, I. & Yazaki, Y. Control of cardiac gene expression by mechanical stress. Annu. Rev. Physiol. 55, 55–75 (1993).

    Article  CAS  Google Scholar 

  2. Sadoshima, S. & Izumo, S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu. Rev. Physiol. 59, 551–571 (1997).

    Article  CAS  Google Scholar 

  3. Parker, T.G. & Schneider, M.D. Growth factors, proto-oncogenes, and plasticity of the cardiac phenotype. Annu. Rev. Physiol. 53, 179–200 (1991).

    Article  CAS  Google Scholar 

  4. Nadal-Ginard, B. & Mahdavi, V. Molecular basis of cardiac performance: plasticity of the myocardium generated through protein isoform switches. J. Clin. Invest. 84, 1693 –1700 (1989).

    Article  CAS  Google Scholar 

  5. Mercadier, J.J. et al. Myosin isoenzymic changes in several models of rat cardiac hypertrophy. Circ. Res. 49, 525– 532 (1981).

    Article  CAS  Google Scholar 

  6. Izumo, S., Nadal-Ginard, B. & Mahdavi, V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc. Natl. Acad. Sci. USA 85, 339–343 ( 1988).

    Article  CAS  Google Scholar 

  7. Izumo, S. et al. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. J. Clin. Invest. 79, 970–977 (1987).

    Article  CAS  Google Scholar 

  8. Schwartz, K. et al. α-skeletal muscle actin mRNA's accumulate in hypertrophied adult rat hearts. Circ. Res. 59, 551– 555 (1986).

    Article  CAS  Google Scholar 

  9. Schwartz, K., Boheler, K.R., de la Bastie, D., Lompre, A.M. & Mercadier, J.J. Switches in cardiac muscle gene expression as a result of pressure and volume overload. Am. J. Physiol. 262 , R364–R369 (1992).

    Article  CAS  Google Scholar 

  10. Geenen, D.L., Malhotra, A., Buttrick, P.M. & Scheuer, J. Increased heart rate prevents the isomyosin shift after cardiac transplantation in the rat. Circ. Res. 70, 554– 558 (1992).

    Article  CAS  Google Scholar 

  11. Geenen, D., Malhotra, A., Buttrick, P.M. & Scheuer, J. Ventricular pacing attenuates but does not reverse cardiac atrophy and an isomyosin shift in the rat heart. Am. J. Physiol. 267 , H2149–H2154 (1994).

    CAS  PubMed  Google Scholar 

  12. Klein, I., Ojamaa, K., Samarel, A.M., Welikson, R. & Hong, C. Hemodynamic regulation of myosin heavy chain expression. J. Clin. Invest. 89, 68 –73 (1992).

    Article  CAS  Google Scholar 

  13. Muller, J. et al. Weaning from mechanical cardiac support in patients with idiopathic dilated cardiomyopathy. Circulation 96, 542–549 (1997).

    Article  CAS  Google Scholar 

  14. Dipla, K., Mattiello, J.A., Jeevanandam, V., Houser, S.R. & Margulies, K.B. Myocyte recovery after mechanical circulatory support in humans with end-stage heart failure. Circulation 97, 2316–2322 ( 1998).

    Article  CAS  Google Scholar 

  15. Zafeiridis, A., Jeevanandam, V., Houser, S.R. & Margulies, K.B. Regression of cellular hypertrophy after left ventricular assist device support. Circulation 98, 656–662 (1998).

    Article  CAS  Google Scholar 

  16. Kleinman, L.H., Wechsler, A.S., Rembert, J.C., Fedor, J.M. & Greenfield, J.C. A reproducible model of moderate to severe concentric left ventricular hypertrophy. Am. J. Physiol. 234, H515–H519 ( 1978).

    CAS  PubMed  Google Scholar 

  17. Ono, K. & Lindsey, E S. Improved technique of heart transplantation in rats. J. Thorac. Cardiovasc. Surg. 57, 225– 229 (1969).

    CAS  PubMed  Google Scholar 

  18. Parker, T.G., Packer, S.E. & Schneider, M.D. Peptide growth factors can provoke "fetal" contractile protein gene expression in rat cardiac myocytes. J. Clin. Invest. 85, 507–514 ( 1990).

    Article  CAS  Google Scholar 

  19. Black, F.B. et al. The vascular smooth muscle alpha-actin gene is reactivated during cardiac hypertrophy provoked by load. J. Clin. Invest. 88, 1581–1588 (1991).

    Article  CAS  Google Scholar 

  20. Rockman, H.A. et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 88, 8277–8281 (1991).

    Article  CAS  Google Scholar 

  21. Schneider, M.D., Roberts, R. & Parker, TG. Modulation of cardiac genes by mechanical stress. The oncogene signalling hypothesis. Mol. Biol. Med. 8, 167–183 (1991).

    CAS  PubMed  Google Scholar 

  22. Paradis, P., McLellan, W.R., Belaguli, N.S., Schwartz, R.J. & Schneider, M.D. Serum response factor mediates AP-1-dependent induction of the skeletal α-actin promoter in ventricular myocytes. J. Biol. Chem. 271, 10827– 10833 (1996).

    Article  CAS  Google Scholar 

  23. Sadoshima, J.I. & Izumo, S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 12, 1681–1692 ( 1993).

    Article  CAS  Google Scholar 

  24. Gould, G.W. in Facilitative Glucose Transporters, 67–104 (Chapman & Hall, Georgetown, Texas, 1997).

    Google Scholar 

  25. Taegtmeyer, H., Hems, R. & Krebs, H.A. Utilization of energy providing substrates in the isolated working rat heart. Biochem. J. 186, 701– 711 (1980).

    Article  CAS  Google Scholar 

  26. Liu, M.L., Olson, A.L., Edgington, N.P., Moyle-Rowley, W.S. & Pessin, J.E. Myocyte enhancer factor 2 (MEF2) binding site is essential for C2C12 myotube-specific expression of the rat GLUT4/muscle-adipose facilitative glucose transporter. J. Biol. Chem. 269, 28514–28521 ( 1994).

    CAS  PubMed  Google Scholar 

  27. Lee, Y., Nadal-Ginard, B., Mahdavi, V. & Izumo, S. Myocyte-specific enhancer factor 2 and thyroid hormone receptor associate and synergistically activate the α-cardiac myosin heavy-chain gene. Mol. Cell. Biol. 17, 2745– 2755 (1997).

    Article  CAS  Google Scholar 

  28. Robbins, J. Regulation of cardiac gene expression during development. Cardiovasc. Res. 31, E2–E16 ( 1996).

    Article  CAS  Google Scholar 

  29. Depre, C., Vanoverschelde, J.L.J & Taegtmeyer, H. Glucose for the heart. Circulation (in the press).

  30. Santalucia, T. et al. Developmental regulation of GLUT-1 (Erythroid/HepG2) and GLUT-4 (Muscle/Fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology 130, 837–846 (1992).

    CAS  PubMed  Google Scholar 

  31. Brown, N.F., Weis, B.C., Husti, J.E., Foster, D.W. & McGarry, J.D. Mitochondrial carnitine palmitoyltransferase isoform switching in the developing rat heart. J. Biol. Chem. 270, 8952–8957 (1995).

    Article  CAS  Google Scholar 

  32. Gould, G.W. & Holman, G.D. The glucose transporter family: structure, function and tissue-specific expression. Biochem. J. 295, 329–341 ( 1993).

    Article  CAS  Google Scholar 

  33. Korecky, B., Zak, R., Schwartz, K. & Aschenbrenner, V. Role of thyroid hormone in regulation of isomyosin composition, contractility, and size of the heterotopically isotransplanted rat heart. Circ. Res. 60, 824–830 ( 1987).

    Article  CAS  Google Scholar 

  34. Dorn, G.W., Robbins, J., Ball, N. & Walsh, R.A. Myosin heavy chain regulation and myocyte contractile depression after LV hypertrophy in aortic-banded mice. Am. J. Physiol. 267, H400– H405 (1994).

    CAS  PubMed  Google Scholar 

  35. Hasegawa, K., Lee, S.J., Jobe, S.M., Markham, B.E. & Kitsis, R.N. cis-acting sequences that mediate induction of β-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation 96, 3943–3953 (1997).

    Article  CAS  Google Scholar 

  36. Doevendans, P.A. & Van Bilsen, M. Transcription factors and the cardiac gene programme. Int. J. Biochem. Cell. Biol. 28, 387–403 ( 1996).

    Article  CAS  Google Scholar 

  37. Han, J., Jiang, Y., Li, Z., Kravchenko, V.V. & Ulevitch, R.J. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296–299 (1997).

    Article  CAS  Google Scholar 

  38. Molkentin, J.D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215– 228 (1998).

    Article  CAS  Google Scholar 

  39. Takahashi, N. et al. Hypertrophic stimuli induce transforming growth factor-β1 expression in rat ventricular myocytes. J. Clin. Invest. 94, 1470–1476 (1994).

    Article  CAS  Google Scholar 

  40. Brand, T. & Schneider, M.D. The TGFβ superfamily in myocardium: ligands, receptors, transduction and function. J. Mol. Cell. Cardiol. 27, 5–18 (1995).

    Article  CAS  Google Scholar 

  41. Komuro, I. et al. Stretching cardiac myocyte stimulates proto-oncogene expression. J. Biol. Chem. 265, 5391– 5398 (1990).

    Google Scholar 

  42. Wang, N., Butler, J.P. & Ingber, D.E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124– 1127 (1993).

    Article  CAS  Google Scholar 

  43. Lowes, B.D et al. Changes in gene expression in the intact human heart. J. Clin. Invest. 100, 2315–2324 (1997).

    Article  CAS  Google Scholar 

  44. Nakao, K., Minobe, W., Roden, R., Bristow, M.R. & Leinwand, L.A. Myosin heavy chain gene expression in human heart failure. J. Clin. Invest. 100, 2362– 2370 (1997).

    Article  CAS  Google Scholar 

  45. Depre, C., Shipley, G.L., Davies, P.J.A., Frazier, O.H. & Taegtmeyer, H. Glucose transporter isoform expression in the failing human heart. Circulation (in the press).

  46. Katz, A.M. Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N. Engl. J. Med. 322, 100 –110 (1990).

    Article  CAS  Google Scholar 

  47. Olivieri, N.F. et al. Treatment of thalassaemia major with phenylbutyrate and hydroxyurea. Lancet 350, 491–492 (1997).

    Article  CAS  Google Scholar 

  48. Deconinck, N. et al. Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nature Med. 3, 1216–1221 ( 1997).

    Article  CAS  Google Scholar 

  49. Heid, C.A., Stevens, J., Livak, K.J. & Williams, P.M. Real time quantitative PCR. Genome Res. 6, 986– 994 (1996).

    Article  CAS  Google Scholar 

  50. Gibson, U.E.M., Heid, C.A. & Williams, P.M. A novel method for real time quantitative RT-PCR. Genome Res. 6, 995–1001 (1996).

    Article  CAS  Google Scholar 

  51. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 159– 169 (1987).

    Article  Google Scholar 

  52. Laborda, J. 36B4 cDNA used as an estradiol-independent mRNA control is the cDNA for human acidic ribosomal phosphoprotein PO. Nucleic Acid Res. 19, 3998 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F.J. Clubb and P. Potts (Texas Heart Institute) for histological preparations, and V. Gaussin for critically reviewing the manuscript. This work was supported in part by grant RO1-HL43133 and NIH-RI-A139026 from the US Public Health Service. C.D. is the recipient of a Daland Fellowship from the American Philosophical Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Taegtmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Depre, C., Shipley, G., Chen, W. et al. Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med 4, 1269–1275 (1998). https://doi.org/10.1038/3253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing