Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of antennal versus leg development in Drosophila

Abstract

During the evolution of insects from a millipede-like ancestor, the Hox genes are thought to have promoted the diversification of originally identical body structures1,2. In Drosophila melanogaster, antennae and legs are homologous structures that differ from each other as a result of the Hox gene Antennapedia (Antp), which promotes leg identities by repressing unknown antennal-determining genes3,4,5,6,7. Here we present four lines of evidence that identify extradenticle (exd) and homothorax (hth) as antennal-determining genes. First, removing the function of exd8,9 or hth, which is required for the nuclear localization of Exd protein10, transforms the antenna into leg; such transformations occur without activation of Antp. Second, hth is expressed and Exd is nuclear in most antennal cells, whereas both are restricted to proximal cells of the leg. Third, Antp is a repressor of hth. Fourth, ectopic expression of Meis1, a murine hth homologue10, can trigger antennal development elsewhere in the fly. Taken together, these data indicate that hth is an antennal selector gene, and that Antp promotes leg development by repressing hth and consequently nuclear Exd.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hth gene is required for antennal development and the nuclear localization of Exd.
Figure 2: The patterns of Antp and nuclear Exd during development.
Figure 3: Antp represses hth expression and results in cytoplasmic Exd.
Figure 4: hth/Meis1 directs antennal development.

Similar content being viewed by others

References

  1. Lewis, E. B. Agene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Akam, M. E., Dawson, I. & Tear, G. Homeotic genes and the control of segment diversity. Development(suppl.) 123–134 (1988).

  3. Gehring, W. Bildung eines vollstandigen Mittelbeiner mit Sternopleura in der Antennenuregion bei der Mutante Nasobemia (Ns) von Drosophila melanogaster. Arch. Klaus-Stift. VererbForsch. 41, 44–54 (1966).

    Google Scholar 

  4. Struhl, G. Ahomoeotic mutation transforming leg to antenna in Drosophila. Nature 292, 635–638 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Struhl, G. Genes controlling segmental specification in the Drosophila thorax. Proc. Natl Acad. Sci. USA 79, 7380–7384 (1982).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Abbot, M. K. & Kaufman, T. C. The relationship between the functional complexity and the molecular organization of the Antennapedia locus of Drosophila melanogaster. Genetics 114, 919–942 (1986).

    Google Scholar 

  7. Schnewly, S., Klemenz, R. & Gehring, W. J. Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature 325, 816–818 (1987).

    Article  ADS  Google Scholar 

  8. Gonzalez-Crespo, S. & Morata, G. Control of Drosophila adult pattern by extradenticle. Development 121, 2117–2125 (1995).

    CAS  PubMed  Google Scholar 

  9. Rauskolb, C., Smith, K., Peifer, M. & Wieschaus, E. extradenticle determines segmental identities throughout development. Development 121, 3663–3671 (1995).

    CAS  PubMed  Google Scholar 

  10. Rieckhof, G., Casares, F., Ryoo, H. D., Abu-Shaar, M. & Mann, R. S. Nuclear translocation of Extradenticle requires homothorax, which encodes an Extradenticle-related homeodomain protein. Cell 91, 171–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Kaufman, T. C., Lewis, R. & Wakimoto, B. T. Cytogenetic analysis of chromosome 3 in Drosophila melanogaster: the homeotic gene complex in polytene chromosome interval 84A-B. Genetics 94, 115–133 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schnewly, S., Kuroiwa, A. & Gehring, W. J. Molecular analysis of the dominant homeotic Antennapedia phenotype. EMBO J. 6, 201–206 (1987).

    Article  Google Scholar 

  13. Carroll, S. B., Laymon, R. A., McCutcheon, M. A., Riley, P. D. & Scott, M. P. The localization and regulation of Antennapedia protein expression in Drosophila embryos. Cell 47, 113–122 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Wirz, J., Fessler, L. I. & Gehring, W. J. Localization of the Antennapedia protein in Drosophila embryos and imaginal discs. EMBO J. 5, 3327–3334 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Condie, J. M., Mustard, J. A. & Brower, D. Generation of anti-Antennapedia monoclonal antibodies and Antennapedia protein expression in imaginal discs. Drosoph. Inf. Serv. 70, 52–54 (1991).

    Google Scholar 

  16. Rauskolb, C., Peifer, M. & Wieschaus, E. extradenticle, a regulator of homeotic gene activity, is a homolog of the homeobox-containing human proto-oncogene pbx1. Cell 74, 1–20 (1993).

    Article  Google Scholar 

  17. Struhl, G. & Basler, K. Organizing activity of wingless protein in Drosophila. Cell 72, 527–540 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Brand, A. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  19. Calleja, M., Moreno, E., Pelaz, S. & Morata, G. Visualization of gene expression in living adult Drosophila. Science 274, 252–255 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Gonzalez-Crespo, S. & Morata, G. Genetic evidence for the subdivision of the arthropod limb into coxopodite and telopodite. Development 122, 3921–3928 (1996).

    CAS  PubMed  Google Scholar 

  21. Freeland, D. E. & Kuhn, D. T. Expression patterns of developmental genes reveal segment and parasegment organization of D. melanogaster genital discs. Mech. Dev. 56, 61–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Casares, F., Sánchez, L., Guerrero, I. & Sánchez-Herrero, E. The genital disc of Drosophila melanogaster. I. Segmental and compartmental organization. Dev. Genes Evol. 207, 216–228 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Lecuit, T. & Cohen, S. M. Proximal–distal axis formation in the Drosophila leg. Nature 388, 139–145 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Gibson, G. & Gehring, W. J. Head and thoracic transformation caused by ectopic expression of Antennapedia during Drosophila development. Development 102, 657–675 (1988).

    Google Scholar 

  25. Azpiazu, N. & Morata, G. Functional and regulatory interactions between Hox and extradenticle genes. Genes Dev. 12, 261–273 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shubin, N., Tabin, C. & Carroll, S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Pignoni, F. & Zipursky, S. L. Induction of Drosophila eye development by decapentaplegic. Development 124, 271–278 (1997).

    CAS  PubMed  Google Scholar 

  28. Panganiban, G., Sebring, A., Nagy, L. & Carroll, S. The development of crustacean limbs and the evolution of arthropods. Science 270, 1363–1366 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Cohen, S. M. Specification of limb development in the Drosophila embryo by positional cues from segmentation genes. Nature 343, 173–177 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Steiner, E. Establishment of compartments in the developing leg imaginal discs of Drosophila melanogaster. Wilhelm Roux Arch. Dev. Biol. 180, 9–30 (1976).

    Article  Google Scholar 

  31. Pai, C.-Y. et al. The homothorax homeoprotein activates the nuclear localization of another homeoprotein, Extradenticle, and suppresses eye development in Drosophila. Genes Dev. 12, 435–446 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G..Struhl for fly stocks (including the FRT AntpNS+RC3 chromosome) and for generating a new set of AntpM+ clones; H. D. Ryoo for preparing the Hth protein for making the anti-Hth antibody; M. Abu-Shaar for generating the NLS–Exd fusion; G. Rieckhof for first characterizing hth clones; G. Panganiban and D. Brower for antibodies; and G. Morata, E. Sánchez-Herrero, G. Struhl and members of our laboratory for discussions and comments on the manuscript. This work was supported by grants from the HFSP and NIH to R.S.M. F.C. was supported by an EMBO fellowship and R.S.M. is a scholar of the Leukemia Society of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Mann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casares, F., Mann, R. Control of antennal versus leg development in Drosophila. Nature 392, 723–726 (1998). https://doi.org/10.1038/33706

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33706

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing