Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biosynthesis of cadmium sulphide quantum semiconductor crystallites

Abstract

NANOMETRE-SCALE semiconductor quantum crystallites exhibit size-dependent and discrete excited electronic states which occur at energies higher than the band gap of the corresponding bulk solid1–4. These crystallites are too small to have continuous energy bands, even though a bulk crystal structure is present. The onset of such quantum properties sets a fundamental limit to device miniaturization in microelectronics5. Structures with either one, two or all three dimensions on the nanometer scale are of particular interest in solid state physics6. We report here our discovery of the biosynthesis of quantum crystallites in yeasts Candida glabrata and Schizosaccharomyces pombe, cultured in the presence of cad-mium salts. Short chelating peptides of general structure (γ-Glu-Cys)n-Gly control the nucleation and growth of CdS crystallites to peptide-capped intracellular particles of diameter 20 Å. These quantum CdS crystallites are more monodisperse than CdS par-ticles synthesized chemically. X-ray data indicate that, at this small size, the CdS structure differs from that of bulk CdS and tends towards a six-coordinate rock-salt structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rossetti, R., Nakahara, S. & Brus, L. E. J. chem. Phys. 79, 1086–1088 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Nozik, A. J., Williams, F., Nenadovic, M. T., Rajh, T. & Micic, O.I. J. phys. Chem. 89, 397–399 (1985).

    Article  Google Scholar 

  3. Henglein, A. in Topics in Current Chemistry 143, 113–181 (Springer, Berlin, 1988).

    Google Scholar 

  4. Rossetti, R., Ellison, J. L., Gibson, J. M., & Brus, L. E. H. J. chem. Phys. 80, 4464–4469 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Sugano, S., Nishina, Y. & Ohnishi, S. (eds) Microclusters (Springer, Heidelberg, 1987).

    Google Scholar 

  6. IEEE J. quan. Elec. Spec. Iss. QE-22, No. 9 (September 1986).

  7. Hayashi, Y., Hakagawa, C. W. & Murasugi, A. Envir, HIth Perspect. 65, 13–19 (1986).

    CAS  Google Scholar 

  8. Grill, E., Winnacker, E. L. & Zenk, M. H. FEBS Lett. 197, 115–120 (1986).

    Article  CAS  Google Scholar 

  9. Reese, R. N., Mehra, R. K., Tarbet, E. B. & Winge, D. R. J. biol. Chem. 263, 4186–4192 (1988).

    CAS  PubMed  Google Scholar 

  10. Steffens, J. C., Hunt, D. E. & Williams, B. G. J. biol. Chem. 261, 13879–13882 (1986).

    CAS  PubMed  Google Scholar 

  11. Weber, D. N., Shaw, C. F. III & Petering, D. H. J. biol. Chem. 262, 6962–6964 (1987).

    CAS  PubMed  Google Scholar 

  12. Grill, E., Winnacker, E. L. & Zenk, M. H. Science 230, 674–676 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Murasugi, A., Wada Nakagawa, C. & Hayashi, Y. J. Biochem., Tokyo 96, 1375–1379 (1984).

    Article  CAS  Google Scholar 

  14. Reese, R. N. & Winge, D. R. J. biol. Chem. 263, 12832–12835 (1988).

    CAS  PubMed  Google Scholar 

  15. Mehra, R. K., Tarbet, E. B., Gray, W. R. & Winge, D. R. Proc. natn. Acad. Sci. U.S.A. 85, 8815–8819 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Osugi, J., Shimizu, K., Nakamara, T. & Onodera, A. Rev. phys. Chem., Japan 36, 59–73 (1986).

    Google Scholar 

  17. Brus, L. E. J. chem. Phys. 80, 4403–4407 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Chestnoy, N., Harris, T. D., Hull, R. & Brus, L. E. J. phys. Chem. 90, 3393–3399 (1986).

    Article  CAS  Google Scholar 

  19. Kuczynski, J. & Thomas, J. K. Chem. Phys. Lett. 88, 445–447 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Fojtik, A., Weller, H., Koch, U. & Henglein, A. Ber. Bunsenges. phys. Chem. 88, 969–977 (1984).

    Article  CAS  Google Scholar 

  21. Meyer, M., Walberg, C., Kurihara, K. & Fendler, J. H. J. chem. Soc. chem. Commun. 90–91 (1984).

  22. Fendler, J. Chem. Rev. 87, 877–899 (1987).

    Article  CAS  Google Scholar 

  23. Wang, Y. & Herron, N. J. phys. Chem. 91, 257–261 (1987).

    Article  CAS  Google Scholar 

  24. Steigerwald, M. et al. J. Am. chem. Soc. 110, 3046–3050 (1988).

    Article  CAS  Google Scholar 

  25. Aiking, H., Kok, K., van Heerikhuizen, H. & van't Reit, J. Appl. envir. Microbiol. 44, 938–944 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dameron, C., Reese, R., Mehra, R. et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338, 596–597 (1989). https://doi.org/10.1038/338596a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338596a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing