Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

α-Adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating

Abstract

IN sympathetic neurons, catecholamines interact with prejunctional α-adrenergic receptors to reduce delivery of transmitter to postjunctional target organs1-4. This autoinhibitory feedback is a general phenomenon seen in diverse neurons containing a variety of transmitters2-4. The underlying mechanisms of α-adrenergic inhibition are not clear, although decreases in cyclic AMP and cAMP-mediated phosphorylation have been implicated1-4 (compare ref. 5). We have studied depolarization-induced catecholamine release and calcium-channel currents in frog sympathetic neurons. Here we show that α-adrenergic inhibition of transmitter release can be explained by inhibition of Ca2+-channel currents and not by modulation of intracellular proteins. Noradrenaline strongly reduces the activity of N-type Ca2+ channels, the dominant calcium entry pathway triggering sympathetic transmitter release6, whereas L-type Ca2+ channels are not significantly inhibited. The down-modulation of N-type channels involves changes in rapid gating kinetics but not in unitary flux. This is the first detailed description of inhibition of a high-voltage activated neuronal Ca2+ channel at the single-channel level. The coupling between α-adrenergic receptors and N-type channels involves a G protein, but not a readily diffusible cytoplasmic messenger or protein kinase C, and may be well suited for rapid and spatially localized feedback-control of transmitter release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Langer, S. Z. Pharmac. Rev. 32, 337–362 (1981).

    Google Scholar 

  2. Starke, K. Rev. Physiol. Biochem. Pharmac. 107, 73–146 (1987).

    Article  CAS  Google Scholar 

  3. Mulder, A. H., Frankhuyzen, A. L., Stoof, J. C., Werner, J. & Schoffelmeer, A. N. M. in Catecholamines: Neuropharmacology and Central Nervous System—Theoretical Aspects, 47–58 (Liss, New York, 1984).

    Google Scholar 

  4. Illes, P. Neuroscience 17, 909–928 (1986).

    Article  CAS  Google Scholar 

  5. Johnston, H., Majewski, H. & Musgrave, I. F. Br. J. Pharmac. 91, 773–781 (1987).

    Article  CAS  Google Scholar 

  6. Hirning, L. D. et al., Science 239, 57–61 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Suetake, K., Kojima, H., Inanaga, K. & Koketsu, K. Brain Res. 205, 436–440 (1981).

    Article  CAS  Google Scholar 

  8. Canfield, D. R. & Dunkap, K. Br. J. Pharmac. 82, 557–563 (1984).

    Article  CAS  Google Scholar 

  9. Docherty, R. J. & McFadzean, I. Eur. J. Neurosci. (in the press).

  10. Llinas, R., McGuinness, T. L., Leonard, C. S., Sugimori, M. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 72, 187–190 (1985).

    Article  Google Scholar 

  11. Hidaka, H., Inagai, M., Kawamoto, S. & Sasaki, Y. Biochemistry 23, 5036–5041 (1984).

    Article  CAS  Google Scholar 

  12. DeLangen, C. D. J. & Mulder, A. H. Brain Res. 185, 399–408 (1980).

    Article  CAS  Google Scholar 

  13. McAfee, D. A., Henon, B. K., Horn, J. P. & Yarowsky, P. Fedn. Proc. 40, 2246–2249 (1981).

    CAS  Google Scholar 

  14. Galvan, M. & Adams, P. R. Brain Res. 244, 135–144 (1982).

    Article  CAS  Google Scholar 

  15. Marchetti, C., Carbone, E. & Lux, H. D. Pflugers Arch. ges. Physiol. 406, 104–111 (1986).

    Article  CAS  Google Scholar 

  16. Holz, G. G., Rane, S. G. & Dunlap, K. Nature 319, 670–672 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Forscher, P., Oxford, G. S. & Schultz, D. J. Physiol., Lond. 379, 131–144 (1986).

    Article  CAS  Google Scholar 

  18. Dunlap, K. & Fischbach, G. D. J. Physiol., Lond. 317, 519–535 (1981).

    Article  CAS  Google Scholar 

  19. Bean, B. P. Nature, 340, 153–156 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Scott, R. H. & Dolphin, A. C. Nature 330, 760–762 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Hescheler, J., Rosenthal, W., Trautwein, W. & Schultz, G. Nature 325, 445–447 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Wanke, E. et al. Proc. natn. Acad. Sci. U.S.A. 84, 4313–4317 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Fox, A. P., Nowycky, M. C. & Tsien, R. W. J. Physiol., Lond. 394, 173–200 (1987).

    Article  CAS  Google Scholar 

  24. Tsien, R. W., Lipscombe, D., Madison, D. V., Bley, K. R. & Fox, A. P. Trends Neurosci. 11, 431–438 (1988).

    Article  CAS  Google Scholar 

  25. Plummer, M. R., Logothetic, D. E. & Hess, P. Neuron 2, 1453–1463 (1989).

    Article  CAS  Google Scholar 

  26. Bean, B. P. A. Rev. Physiol. 51, 367–384 (1989).

    Article  CAS  Google Scholar 

  27. Kongsamut, S., Lipscombe, D. & Tsien, R. W. Ann. N.Y. Acad. Sci. 560, 312–333 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Anderson, C. S. & Dunlap, K. Soc. Neurosci. Abstr. 14, 644 (1988).

    Google Scholar 

  29. Lipscombe, D., Bley, K. R. & Tsien, R. W. Soc. Neurosci. Abstr. 14, 153 (1988).

    Google Scholar 

  30. Perney, T. M., Hirning, L. D., Leeman, S. E. & Miller, R. J. Proc. natn. Acad. Sci. U.S.A. 83, 6656–6659 (1986).

    Article  ADS  CAS  Google Scholar 

  31. Lindgren, C. A., Moore, J. W. & Sostman, A. H. J. gen. Physiol. (Abstr). 92, 5 (1988).

    Google Scholar 

  32. Rane, S. G., Holz, G. G. & Dunlap, K. Pflugers Arch. ges Physiol. 409, 361–366 (1987).

    Article  CAS  Google Scholar 

  33. Rane, S. G. & Dunlap, K. Proc. natn. Acad. Sci. U.S.A. 83, 184–188 (1986).

    Article  ADS  CAS  Google Scholar 

  34. Williams, J. T., Henderson, G. & North, R. A. Neuroscience 14, 95–101 (1985).

    Article  CAS  Google Scholar 

  35. Dunlap, K. Pflügers Arch. ges. Physiol. 403, 170–174 (1985).

    Article  CAS  Google Scholar 

  36. Azuma, T., Binia, A. & Visscher, M. B. Am. J. Physiol. 209, 1287–1294 (1965).

    CAS  PubMed  Google Scholar 

  37. Lipscombe, D. & Tsien, R. W. J. Physiol. 390, 84P.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipscombe, D., Kongsamut, S. & Tsien, R. α-Adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating. Nature 340, 639–642 (1989). https://doi.org/10.1038/340639a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340639a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing