Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response

Abstract

PERK and IRE1 are type-I transmembrane protein kinases that reside in the endoplasmic reticulum (ER) and transmit stress signals in response to perturbation of protein folding. Here we show that the lumenal domains of these two proteins are functionally interchangeable in mediating an ER stress response and that, in unstressed cells, both lumenal domains form a stable complex with the ER chaperone BiP. Perturbation of protein folding promotes reversible dissociation of BiP from the lumenal domains of PERK and IRE1. Loss of BiP correlates with the formation of high-molecular-mass complexes of activated PERK or IRE1, and overexpression of BiP attenuates their activation. These findings are consistent with a model in which BiP represses signalling through PERK and IRE1 and protein misfolding relieves this repression by effecting the release of BiP from the PERK and IRE1 lumenal domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PERK forms a complex with BiP in unstressed cells.
Figure 2: Functional similarities of the lumenal domains of PERK and IRE1.
Figure 3: ER stress leads to dissociation of the BiP–PERK and BiP–IRE1α complexes.
Figure 4: BiP reassociates with PERK and IRE1α upon removal of ER stress.
Figure 5: BiP binding and activation of stress-signal transducers in BiP-overexpressing CHO cells.
Figure 6: ER-stress-induced formation of high-molecularmass complexes containing PERK or IRE1α but lacking BiP.
Figure 7: Oligomerization-induced activation of PERK kinase in vivo.

Similar content being viewed by others

References

  1. Lee, A. Mammalian stress response: induction of the glucose-regulated protein family. Curr. Biol. 4, 267–273 ( 1992).

    Article  CAS  Google Scholar 

  2. Brostrom, C. O. & Brostrom, M. A. Regulation of translational initiation during cellular responses to stress. Prog. Nucleic Acid Res. Mol. Biol. 58, 79– 125 (1998).

    Article  CAS  Google Scholar 

  3. Chapman, R., Sidrauski, C. & Walter, P. Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu. Rev. Cell Dev. Biol. 14, 459–485 (1998).

    Article  CAS  Google Scholar 

  4. Kaufman, R. J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233 ( 1999).

    Article  CAS  Google Scholar 

  5. Tirasophon, W., Welihinda, A. A. & Kaufman, R. J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12, 1812–1824 (1998).

    Article  CAS  Google Scholar 

  6. Wang, X. Z. et al. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 17, 5708– 5717 (1998).

    Article  CAS  Google Scholar 

  7. Shi, Y. et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol. Cell Biol. 18, 7499–7509 (1998).

    Article  CAS  Google Scholar 

  8. Harding, H., Zhang, Y. & Ron, D. Translation and protein folding are coupled by an endoplasmic reticulum resident kinase. Nature 397, 271– 274 (1999).

    Article  CAS  Google Scholar 

  9. Munro, S. & Pelham, H. R. An Hsp70-like protein in the ER: identity with the 78 kDa glucose- regulated protein and immunoglobulin heavy chain binding protein. Cell 46, 291– 300 (1986).

    Article  CAS  Google Scholar 

  10. Wei, J. & Hendershot, L. M. Characterization of the nucleotide binding properties and ATPase activity of recombinant hamster BiP purified from bacteria. J. Biol. Chem. 270, 26670 –26676 (1995).

    Article  CAS  Google Scholar 

  11. Hebert, D. N., Simons, J. F., Peterson, J. R. & Helenius, A. Calnexin, calreticulin, and Bip/Kar2p in protein folding. Cold Spring Harb. Symp. Quant. Biol. 60, 405– 415 (1995).

    Article  CAS  Google Scholar 

  12. Dorner, A., Wasley, L. & Kaufman, R. Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J. 11, 1563– 1571 (1992).

    Article  CAS  Google Scholar 

  13. Wang, et al. Signals from the stressed endoplasmic reticulum induce C/EBP homologous protein (CHOP/GADD153). Mol. Cell Biol. 16, 4273 –4280 (1996).

    Article  CAS  Google Scholar 

  14. Shamu, C. E. & Walter, P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 15, 3028– 3039 (1996).

    Article  CAS  Google Scholar 

  15. Welihinda, A. A. & Kaufman, R. J. The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation. J. Biol. Chem. 271, 18181– 18187 (1996).

    Article  CAS  Google Scholar 

  16. Langland, J. O. & Jacobs, B. L. Cytosolic double-stranded RNA-dependent protein kinase is likely a dimer of partially phosphorylated Mr 66,000 subunits. J. Biol. Chem. 267 , 10729–10736 (1992).

    CAS  PubMed  Google Scholar 

  17. Reinhard, C., Shamoon, B., Shyamala, V. & Williams, L. T. Tumor necrosis factor alpha-induced activation of c-jun N-terminal kinase is mediated by TRAF2. EMBO J. 16, 1080– 1092 (1997).

    Article  CAS  Google Scholar 

  18. Bukau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351– 366 (1998).

    Article  CAS  Google Scholar 

  19. Matlack, K. E., Misselwitz, B., Plath, K. & Rapoport, T. A. BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell 97, 553–564 (1999).

    Article  CAS  Google Scholar 

  20. Liberek, K., Galitski, T. P., Zylicz, M. & Georgopoulos, C. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor. Proc. Natl Acad. Sci. USA 89, 3516–3520 (1992).

    Article  CAS  Google Scholar 

  21. Gamer, J., Bujard, H. & Bukau, B. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32 . Cell 69, 833–842 (1992).

    Article  CAS  Google Scholar 

  22. Tomoyasu, T., Ogura, T., Tatsuta, T. & Bukau, B. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol. Microbiol. 30, 567–581 (1998).

    Article  CAS  Google Scholar 

  23. Morimoto, R. I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators . Genes Dev. 12, 3788–3796 (1998).

    Article  CAS  Google Scholar 

  24. Zou, J., Guo, Y., Guettouche, T., Smith, D. F. & Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471–480 ( 1998).

    Article  CAS  Google Scholar 

  25. Straus, D. B., Walter, W. A. & Gross, C. A. The activity of sigma 32 is reduced under conditions of excess heat shock protein production in Escherichia coli. Genes Dev. 3, 2003–2010 (1989).

    Article  CAS  Google Scholar 

  26. Kohno, K., Normington, K., Sambrook, J., Gething, M. J. & Mori, K. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol. Cell Biol. 13, 877–890 (1993).

    Article  CAS  Google Scholar 

  27. Freiden, P. J., Gaut, J. R. & Hendershot, L. M. Interconversion of three differentially modified and assembled forms of BiP. EMBO J. 11, 63–70 (1992).

    Article  CAS  Google Scholar 

  28. Hendershot, L. M. et al. In vivo expression of mammalian BiP ATPase mutants causes disruption of the endoplasmic reticulum. Mol. Biol. Cell 6, 283–296 ( 1995).

    Article  CAS  Google Scholar 

  29. Bertolotti, A. et al. EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II: interactions between two members of the TET family, EWS and hTAFII68, and subunits of TFIID and RNA polymerase II complexes. Mol. Cell Biol. 18, 1489–1497 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Kreibich for the anti-ribophorin antiserum, D. Littman for CD4 cDNA and monoclonal antibody, R. Kaufman and A. Dorner for CHO.BiPoe cells, M. A. Gawinowicz for mass spectroscopy and J-P. Simon for help with glycerol gradients. This work was supported by NIH grants (ES08681 and DK47119) to D.R., National Research Service award (NRSA) to H.P.H. and EMBO and Human Frontier Science programme awards to A.B. D.R. is a Stephen Birnbaum Scholar of the Leukaemia Society of America.

Correspondence and requests for materials should be addressed to D.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertolotti, A., Zhang, Y., Hendershot, L. et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2, 326–332 (2000). https://doi.org/10.1038/35014014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35014014

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing