Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Acetylcholinesterase — new roles for an old actor

Abstract

The discovery of the first neurotransmitter — acetylcholine — was soon followed by the discovery of its hydrolysing enzyme, acetylcholinesterase. The role of acetylcholinesterase in terminating acetylcholine-mediated neurotransmission made it the focus of intense research for much of the past century. But the complexity of acetylcholinesterase gene regulation and recent evidence for some of the long-suspected 'non-classical' actions of this enzyme have more recently driven a profound revolution in acetylcholinesterase research. Although our understanding of the additional roles of acetylcholinesterase is incomplete, the time is ripe to summarize the evidence on a remarkable diversity of acetylcholinesterase functions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acetylcholinesterase.
Figure 2: Neuritogenesis.
Figure 3: Proposed mechanism of some non-classical AChE functions.
Figure 4: The human ACHE gene and its alternative messenger RNAs.

Similar content being viewed by others

References

  1. Dale, H. The action of certain esters and ethers of choline, and their relation to muscarine . J. Pharmacol. Exp. Therap. 6, 147– 190 (1914).

    CAS  Google Scholar 

  2. Loewi, O. & Navratil, E. Uber humorale Ubertragbarkeit der Herznervenwirkung. X Mitteilung. Pfluger's Arch. 214 , 678–688 (1926).

    Article  CAS  Google Scholar 

  3. Wright, C. I., Geula, C. & Mesulam, M. M. Neurological cholinesterases in the normal brain and in Alzheimer's disease: relationship to plaques, tangles, and patterns of selective vulnerability. Ann. Neurol. 34, 373–384 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Polinsky, R. J., Holmes, K. V., Brown, R. T. & Weise, V. CSF acetylcholinesterase levels are reduced in multiple system atrophy with autonomic failure. Neurology 39, 40– 44 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Ohno, K. et al. The spectrum of mutations causing end-plate acetylcholinesterase deficiency. Ann. Neurol. 47, 162– 170 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Silver, A. A histochemical investigation of cholinesterases at neuromuscular junctions in mammalian and avian muscle. J. Physiol. (Lond.) 169, 386–393 (1963).

    Article  CAS  Google Scholar 

  7. Augustinsson, K. B. & Nachmansohn, D. Distinction between acetylcholinesterase and other choline ester-splitting enzymes. Science 110, 98–99 ( 1949).

    Article  CAS  PubMed  Google Scholar 

  8. Li, B. et al. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J. Neurochem. 75, 1320–1331 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Sussman, J. L. et al. Atomic structure of acetylcholinesterase from Torpedo californica : a prototypic acetylcholine-binding protein. Science 253, 872–879 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Bourne, Y., Taylor, P. & Marchot, P. Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell 83, 503– 512 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Harel, M. et al. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci. 9, 1063–1072 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kryger, G. et al. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr. D Biol. Crystallogr. 56, 1385–1394 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Shafferman, A. et al. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J. Biol. Chem. 267, 17640–17648 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Nair, H. K., Seravalli, J., Arbuckle, T. & Quinn, D. M. Molecular recognition in acetylcholinesterase catalysis: free-energy correlations for substrate turnover and inhibition by trifluoro ketone transition-state analogs. Biochemistry 33, 8566– 8576 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Ripoll, D. R., Faerman, C. H., Axelsen, P. H., Silman, I. & Sussman, J. L. An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase. Proc. Natl Acad. Sci. USA 90, 5128– 5132 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shafferman, A. et al. Electrostatic attraction by surface charge does not contribute to the catalytic efficiency of acetylcholinesterase. EMBO J. 13, 3448–3455 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Radic, Z., Kirchhoff, P. D., Quinn, D. M., McCammon, J. A. & Taylor, P. Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase. Distinctions between active center ligands and fasciculin. J. Biol. Chem. 272, 23265–23277 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Taylor, P., Luo, Z. D. & Camp, S. in Cholinesterases and Cholinesterase Inhibitors (ed. Giacobini, E.) 63–79 (Martin Dunitz, London, 2000).

    Google Scholar 

  19. Botti, S. A., Felder, C. E., Sussman, J. L. & Silman, I. Electrotactins: a class of adhesion proteins with conserved electrostatic and structural motifs. Protein Eng. 11, 415–420 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Luo, Z. D., Camp, S., Mutero, A. & Taylor, P. Splicing of 5′ introns dictates alternative splice selection of acetylcholinesterase pre-mRNA and specific expression during myogenesis. J. Biol. Chem. 273, 28486–28495 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Atanasova, E., Chiappa, S., Wieben, E. & Brimijoin, S. Novel messenger RNA and alternative promoter for murine acetylcholinesterase. J. Biol. Chem. 274, 21078–21084 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Li, Y., Camp, S., Rachinsky, T. L., Getman, D. & Taylor, P. Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J. Biol. Chem. 266, 23083–23090 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  23. Bon, S., Coussen, F. & Massoulie, J. Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail. J. Biol. Chem. 272, 3016–3021 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  24. Donger, C. et al. Mutation in the human acetylcholinesterase-associated collagen gene, COLQ, is responsible for congenital myasthenic syndrome with end-plate acetylcholinesterase deficiency (Type Ic). Am. J. Hum. Genet. 63, 967–975 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Futerman, A. H., Low, M. G., Ackermann, K. E., Sherman, W. R. & Silman, I. Identification of covalently bound inositol in the hydrophobic membrane-anchoring domain of Torpedo acetylcholinesterase . Biochem. Biophys. Res. Commun. 129, 312 –317 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Massoulie, J. et al. The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Chem. Biol. Interact 119–120, 29–42 (1999).

    Article  PubMed  Google Scholar 

  27. Fitzpatrick-McElligott, S. & Stent, G. S. Appearance and localization of acetylcholinesterase in embryos of the leech Helobdella triserialis. J. Neurosci. 1, 901– 907 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Betz, H., Bourgeois, J. P. & Changeux, J. P. Evolution of cholinergic proteins in developing slow and fast skeletal muscles in chick embryo. J. Physiol. 302, 197–218 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Layer, P. G. Cholinesterases preceding major tracts in vertebrate neurogenesis. Bioessays 12, 415–420 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  30. Kreutzberg, G. W. Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine. Proc. Natl Acad. Sci. USA 62, 722–728 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Appleyard, M. E. Secreted acetylcholinesterase: non-classical aspects of a classical enzyme . Trends Neurosci. 15, 485– 490 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Small, D. H. Non-cholinergic actions of acetylcholinesterases: proteases regulating cell growth and development? Trends Biochem. Sci. 15, 213–216 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Checler, F., Grassi, J. & Vincent, J. P. Cholinesterases display genuine arylacylamidase activity but are totally devoid of intrinsic peptidase activities. J. Neurochem. 62, 756–763 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  34. Layer, P. G., Weikert, T. & Alber, R. Cholinesterases regulate neurite growth of chick nerve cells in vitro by means of a non-enzymatic mechanism. Cell Tissue Res. 273, 219–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Small, D. H., Reed, G., Whitefield, B. & Nurcombe, V. Cholinergic regulation of neurite outgrowth from isolated chick sympathetic neurons in culture. J. Neurosci. 15, 144–151 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koenigsberger, C., Chiappa, S. & Brimijoin, S. Neurite differentiation is modulated in neuroblastoma cells engineered for altered acetylcholinesterase expression. J. Neurochem. 69, 1389–1397 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Grifman, M., Galyam, N., Seidman, S. & Soreq, H. Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis. Proc. Natl Acad. Sci. USA 95, 13935– 13940 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bigbee, J. W., Sharma, K. V., Chan, E. L. & Bogler, O. Evidence for the direct role of acetylcholinesterase in neurite outgrowth in primary dorsal root ganglion neurons. Brain Res. 861, 354–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. de la Escalera, S., Bockamp, E. O., Moya, F., Piovant, M. & Jimenez, F. Characterization and gene cloning of neurotactin, a Drosophila transmembrane protein related to cholinesterases. EMBO J. 9, 3593–3601 ( 1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Darboux, I., Barthalay, Y., Piovant, M. & Hipeau Jacquotte, R. The structure–function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties. EMBO J. 15, 4835–4843 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sternfeld, M. et al. Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini. J. Neurosci. 18, 1240–1249 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Song, J. Y., Ichtchenko, K., Sudhof, T. C. & Brose, N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses . Proc. Natl Acad. Sci. USA 96, 1100– 1105 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Llinas, R. R. & Greenfield, S. A. On-line visualization of dendritic release of acetylcholinesterase from mammalian substantia nigra neurons. Proc. Natl Acad. Sci. USA 84, 3047– 3050 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Holmes, C., Jones, S. A., Budd, T. C. & Greenfield, S. A. Non-cholinergic, trophic action of recombinant acetylcholinesterase on mid-brain dopaminergic neurons. J. Neurosci. Res. 49, 207–218 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Inestrosa, N. C. et al. Acetylcholinesterase accelerates assembly of amyloid-β peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. Neuron 16, 881– 891 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Paoletti, F., Mocali, A. & Vannucchi, A. M. Acetylcholinesterase in murine erythroleukemia (Friend) cells: evidence for megakaryocyte-like expression and potential growth-regulatory role of enzyme activity. Blood 79, 2873– 2879 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Lev-Lehman, E., Deutsch, V., Eldor, A. & Soreq, H. Immature human megakaryocytes produce nuclear-associated acetylcholinesterase. Blood 89, 3644–3653 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Kawashima, K. & Fujii, T. Extraneuronal cholinergic system in lymphocytes. Pharmacol. Ther. 86, 29– 48 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Soreq, H. et al. Antisense oligonucleotide inhibition of acetylcholinesterase gene expression induces progenitor cell expansion and suppresses hematopoietic apoptosis ex vivo. Proc. Natl Acad. Sci. USA 91, 7907–7911 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brown, L. M. et al. Pesticide exposure and other agricultural risk factors for leukemia among men in Iowa and Minnesota. Cancer Res. 50, 6585–6591 (1990).

    CAS  PubMed  Google Scholar 

  52. Lev-Lehman, E. et al. Synaptogenesis and myopathy under acetylcholinestrase overexpression . J. Mol. Neurosci. 14, 93– 105 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Lapidot-Lifson, Y. et al. Coamplification of human acetylcholinesterase and butyrylcholinesterase genes in blood cells: correlation with various leukemias and abnormal megakaryocytopoiesis . Proc. Natl Acad. Sci. USA 86, 4715– 4719 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stephenson, J., Czepulkowski, B., Hirst, W. & Mufti, G. Deletion of the acetylcholinesterase locus at 7q22 associated with myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). Leuk. Res. 20, 235–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Velan, B. et al. N-glycosylation of human acetylcholinesterase: effects on activity, stability and biosynthesis. Biochem. J. 296, 649–656 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chan, R. Y., Adatia, F. A., Krupa, A. M. & Jasmin, B. J. Increased expression of acetylcholinesterase T and R transcripts during hematopoietic differentiation is accompanied by parallel elevations in the levels of their respective molecular forms. J. Biol. Chem. 273, 9727–9733 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Camp, S. & Taylor, P. in Structure and Function of Cholinesterases and Related Proteins (eds Doctor, B. P., Taylor, P., Quinn, D. M., Rotundo, R. L. & Gentry, M. K.) 51–55 (Plenum, New York, 1998).

    Book  Google Scholar 

  58. Grisaru, D. et al. ARP, a peptide derived from the stress-associated acetylcholinesterase variant has hematopoietic growth promoting activities. Mol. Med. (in the press).

  59. Li, Y., Camp, S., Rachinsky, T. L., Bongiorno, C. & Taylor, P. Promoter elements and transcriptional control of the mouse acetylcholinesterase gene. J. Biol. Chem. 268, 3563–3572 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  60. Shapira, M. et al. A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum. Mol. Genet. 9, 1273–1281 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Chan, R. Y., Boudreau-Lariviere, C., Angus, L. M., Mankal, F. A. & Jasmin, B. J. An intronic enhancer containing an N-Box motif is required for synapse- and tissue-specific expression of the acetylcholinesterase gene in skeletal muscle fibers. Proc. Natl Acad. Sci. USA 96, 4627–4632 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rotundo, R. L. Nucleus-specific translation and assembly of acetylcholinesterase in multinucleated muscle cells. J. Cell Biol. 110, 715– 719 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Galyam, N. et al. Complex host cell responses to antisense suppression of ACHE gene expression. Antisense Nucl. Acid Drug Dev. 11, 51–57 (2001).

    Article  CAS  Google Scholar 

  64. Kaufer, D., Friedman, A., Seidman, S. & Soreq, H. Acute stress facilitates long-lasting changes in cholinergic gene expression . Nature 393, 373–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Nordberg, A., Hellstrom-Lindahl, E., Almkvist, O. & Meurling, L. Activity of acetylcholinesterase in CSF increases in Alzheimer's patients after treatment with tacrine. Alzheimer's Reports 2 , 347–352 (1999).

    Google Scholar 

  66. Grisaru, D. et al. Human osteogenesis involves differentiation-dependent increases in the morphogenically active 3′ alternative splicing variant of acetylcholinesterase . Mol. Cell. Biol. 19, 788– 795 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schober, A. et al. Reduced acetylcholinesterase (AChE) activity in adrenal medulla and loss of sympathetic preganglionic neurons in TrkA-deficient, but not TrkB-deficient, mice. J. Neurosci. 17, 891– 903 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Robertson, R. T. et al. Do subplate neurons comprise a transient population of cells in developing neocortex of rats? J. Comp. Neurol. 426 , 632–650 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Shohami, E. et al. Antisense prevention of neuronal damages following head injury in mice. J. Mol. Med. 78, 228– 236 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Gray, R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M. & Dani, J. A. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383, 713–716 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Ashani, Y. et al. Butyrylcholinesterase and acetylcholinesterase prophylaxis against soman poisoning in mice. Biochem. Pharmacol. 41, 37–41 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Evans, W. E. & Relling, M. V. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286, 487–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Luo, Z. D. et al. Calcineurin enhances acetylcholinesterase mRNA stability during C2-C12 muscle cell differentiation. Mol. Pharmacol. 56, 886–894 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Giacobini, E. in Cholinesterases and Cholinesterase Inhibitors (ed. Giacobini, E.) 181–226 (Martin Dunitz, London, 2000 ).

    Google Scholar 

  75. Erb, C. et al. Compensatory mechanisms facilitate hippocampal acetylcholine release in transgenic mice expressing human acetylcholinesterase. J. Neurochem. (in the press).

  76. Pollet, C. et al. Medical evaluation of Persian Gulf veterans with fatigue and/or chemical sensitivity. J. Med. 29, 101– 113 (1998).

    CAS  PubMed  Google Scholar 

  77. Okumura, T. et al. Report on 640 victims of the Tokyo subway sarin attack. Ann. Emerg. Med. 28, 129–135 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Ohno, K., Brengman, J., Tsujino, A. & Engel, A. G. Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc. Natl Acad. Sci. USA 95, 9654–9659 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fournier, D. et al. Drosophila melanogaster acetylcholinesterase gene. Structure, evolution and mutations. J. Mol. Biol. 210 , 15–22 (1989).

    Article  CAS  PubMed  Google Scholar 

  80. Prody, C. A., Dreyfus, P., Zamir, R., Zakut, H. & Soreq, H. De novo amplification within a 'silent' human cholinesterase gene in a family subjected to prolonged exposure to organophosphorous insecticides . Proc. Natl Acad. Sci. USA 86, 690– 694 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bartels, C. F., Zelinski, T. & Lockridge, O. Mutation at codon 322 in the human acetylcholinesterase (ACHE) gene accounts for YT blood group polymorphism. Am. J. Hum. Genet. 52, 928–936 ( 1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ehrlich, G. et al. Population diversity and distinct haplotype frequencies associated with ACHE and BCHE genes of Israeli Jews from trans-Caucasian Georgia and from Europe. Genomics 22, 288– 295 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. La Du, B. N. et al. Phenotypic and molecular biological analysis of human butyrylcholinesterase variants. Clin. Biochem. 23, 423– 431 (1990).

    Article  CAS  PubMed  Google Scholar 

  84. Beeri, R. et al. Transgenic expression of human acetylcholinesterase induces progressive cognitive deterioration in mice. Curr. Biol. 5, 1063–1071 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Xie, W. et al. Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J. Pharmacol. Exp. Ther. 293, 896–902 (2000).

    CAS  PubMed  Google Scholar 

  86. von der Kammer, H. et al. Muscarinic acetylcholine receptors activate expression of the EGR gene family of transcription factors. J. Biol. Chem. 273, 14538–14544 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Xie, J. & McCobb, D. P. Control of alternative splicing of potassium channels by stress hormones. Science 280 , 443–446 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Daoud, R., Da Penha Berzaghi, M., Siedler, F., Hubener, M. & Stamm, S. Activity-dependent regulation of alternative splicing patterns in the rat brain. Eur. J. Neurosci. 11, 788–802 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Combes, D., Fedon, Y., Grauso, M., Toutant, J. P. & Arpagaus, M. Four genes encode acetylcholinesterases in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. cDNA sequences, genomic structures, mutations and in vivo expression. J. Mol. Biol. 300, 727–742 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Anglister, L., Stiles, J. R. & Salpeter, M. M. Acetylcholinesterase density and turnover number at frog neuromuscular junctions, with modeling of their role in synaptic function . Neuron 12, 783–794 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Peng, H. B., Xie, H., Rossi, S. G. & Rotundo, R. L. Acetylcholinesterase clustering at the neuromuscular junction involves perlecan and dystroglycan . J. Cell Biol. 145, 911– 921 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seidman, S. et al. Synaptic and epidermal accumulations of human acetylcholinesterase are encoded by alternative 3′-terminal exons. Mol. Cell. Biol. 15, 2993–3002 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Harlow, M. L., Ress, D., Stoschek, A., Marshall, R. M. & McMahan, U. J. The architecture of active zone material at the frog's neuromuscular junction. Nature 409, 479– 484 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Feng, G. et al. Genetic analysis of collagen Q: roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function . J. Cell Biol. 144, 1349– 1360 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Karpel, R. et al. Overexpression of alternative human acetylcholinesterase forms modulates process extensions in cultured glioma cells. J. Neurochem. 66, 114–123 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  96. Sternfeld, M. et al. Excess 'readthrough' acetylcholinesterase attenuates but the 'synaptic' variant intensifies neurodeterioration correlates. Proc. Natl Acad. Sci. USA 97, 8647– 8652 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chien, C. T., Bartel, P. L., Sternglanz, R. & Fields, S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl Acad. Sci. USA 88, 9578–9582 ( 1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nissim, A. et al. Antibody fragments from a 'single pot' phage display library as immunochemical reagents. EMBO J. 13, 692–698 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mayford, M., Abel, T. & Kandel, E. R. Transgenic approaches to cognition. Curr. Opin. Neurobiol. 5, 141–148 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Young, R. A. Biomedical discovery with DNA arrays. Cell 102, 9–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A. & McKercher, S. R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  102. Kuhl, D. E. et al. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer's disease. Neurology 52, 691–699 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Shinotoh, H. et al. Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson's disease and progressive supranuclear palsy. Ann. Neurol. 46, 62–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Vereker, E., O'Donnell, E. & Lynch, M. A. The inhibitory effect of interleukin-1β on long-term potentiation is coupled with increased activity of stress-activated protein kinases. J. Neurosci. 20, 6811– 6819 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xu, L., Anwyl, R. & Rowan, M. J. Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 387, 497–500 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Hamilton, S. E. et al. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc. Natl Acad. Sci. USA 94, 13311–13316 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gennari, K., Brunner, J. & Brodbeck, U. Tetrameric detergent-soluble acetylcholinesterase from human caudate nucleus: subunit composition and number of active sites. J. Neurochem. 49, 12–18 (1987).

    Article  CAS  PubMed  Google Scholar 

  108. Franklin, R. B. J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates (Academic, San Diego, 1997 ).

    Google Scholar 

  109. Holmstedt, B. in Cholinesterases and Cholinesterase Inhibitors: Basic, Preclinical and Clinical Aspects (ed. Giacobini, E.) 1–8 (Martin Dunitz, London, 2000).

    Google Scholar 

  110. Abramson, S. N., Radic, Z., Manker, D., Faulkner, D. J. & Taylor, P. Onchidal: a naturally occurring irreversible inhibitor of acetylcholinesterase with a novel mechanism of action. Mol. Pharmacol. 36, 349–354 ( 1989).

    CAS  PubMed  Google Scholar 

  111. Carmichael, W. The toxins of cyanobacteria. Sci. Am. 270, 78–86 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Wilson, I. B. Molecular complementarity and antidotes for alkylphosphate poisoning. Fed. Proc. 18, 752–758 ( 1959).

    CAS  PubMed  Google Scholar 

  113. Keeler, J. R., Hurst, C. G. & Dunn, M. A. Pyridostigmine used as a nerve agent pretreatment under wartime conditions. J. Am. Med. Assoc. 266, 693–695 (1991).

    Article  CAS  Google Scholar 

  114. Haley, R. W., Kurt, T. L. & Hom, J. Is there a Gulf War Syndrome? Searching for syndromes by factor analysis of symptoms. J. Am. Med. Assoc. 277, 215–222 (1997).

    Article  CAS  Google Scholar 

  115. Sapolsky, R. M. The stress of Gulf War syndrome. Nature Med. 393, 308–309 (1998).

    CAS  Google Scholar 

  116. Friedman, A. et al. Pyridostigmine brain penetration under stress enhances neuronal excitability and induces early immediate transcriptional response. Nature Med. 2, 1382–1385 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Grauer, E., Alkalai, D., Kapon, J., Cohen, G. & Raveh, L. Stress does not enable pyridostigmine to inhibit brain cholinesterase after parenteral administration. Toxicol. Appl. Pharmacol. 164, 301–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Lallement, G. et al. Heat stress, even extreme, does not induce penetration of pyridostigmine into the brain of guinea pigs. Neurotoxicology 19, 759–766 (1998).

    CAS  PubMed  Google Scholar 

  119. Esposito, P. et al. Acute stress increases permeability of the blood–brain-barrier through activation of brain mast cells. Brain Res. 888, 117–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Grauer, E. et al. Viral neuroinvasion as a marker for BBB integrity following exposure to cholinesterase inhibitors. Life Sci. 68 , 985–990 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Relyea, R. A. & Mills, N. Predator-induced stress makes the pesticide carbaryl more deadly to gray treefrog tadpoles (Hyla versicolor). Proc. Natl Acad. Sci. USA 98, 2491–2496 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Coyle, J. T., Price, D. L. & DeLong, M. R. Alzheimer's disease: a disorder of cortical cholinergic innervation. Science 219, 1184– 1190 (1983).

    Article  CAS  PubMed  Google Scholar 

  123. Patrick, J. & Lindstrom, J. Autoimmune response to acetylcholine receptor. Science 180, 871– 872 (1973).

    Article  CAS  PubMed  Google Scholar 

  124. Keesey, J. C. Contemporary opinions about Mary Walker: a shy pioneer of therapeutic neurology . Neurology 51, 1433–1439 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Beeri, R. et al. Enhanced hemicholinium binding and attenuated dendrite branching in cognitively impaired acetylcholinesterase-transgenic mice. J. Neurochem. 69, 2441–2451 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Alvarez, A. et al. Stable complexes involving acetylcholinesterase and amyloid-β peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer's fibrils. J. Neurosci. 18, 3213–3223 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sberna, G. et al. Acetylcholinesterase is increased in the brains of transgenic mice expressing the C-terminal fragment (CT100) of the β-amyloid protein precursor of Alzheimer's disease. J. Neurochem. 71, 723–731 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Wilson, B. W. & Viola, G. A. Multiple forms of acetylcholinesterase in nutritional and inherited muscular dystrophy of the chicken. J. Neurol. Sci. 16, 183– 192 (1972).

    Article  CAS  PubMed  Google Scholar 

  129. Silman, I., di Giamberardino, L., Lyles, L., Couraud, J. Y. & Barnard, E. A. Parallel regulation of acetylcholinesterase and pseudocholinesterase in normal, denervated and dystrophic chicken skeletal muscle. Nature 280, 160– 162 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASE LINKS

AChE

BuChE

COLQ

FURTHER INFORMATION

The ESTHER database

GWS literature

ENCYCLOPEDIA OF LIFE SCIENCES

Acetylcholine

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soreq, H., Seidman, S. Acetylcholinesterase — new roles for an old actor. Nat Rev Neurosci 2, 294–302 (2001). https://doi.org/10.1038/35067589

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35067589

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing