Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ATP-dependent glutathione S-conjugate 'export' pump in the vacuolar membrane of plants

Abstract

PLANTS are exposed to many potentially phytotoxic foreign compounds, such as microbial toxins and agrochemicals (xenobiotics). Detoxification and elimination of these compounds within or from the cell is a prerequisite for their survival. Metabolism and detoxification of xenobiotics are remarkably similar in plants and animals and can generally be divided into three phases1,2. In the first phase, a foreign compound may be oxidized, reduced or hydrolysed to introduce or reveal a functional group. In a second step, the activated xenobiotic is conjugated to either glutathione, glucuronate (animals), or malonyl or glucosyl moieties (plants) by the respective transferases. In animals the third step, excretion of conjugated xenobiotics to the extracellular medium, is mediated by a specific ATPase1,3–5. In plants, instead of excretion, conjugates of xenobiotics appear to be stored in the large central vacuole6, but it is not known how they are transported into this organelle. We show here that glutathione S-conjugate uptake into the vacuole is mediated by a specific ATPase which is remarkably similar to the glutathione S-conjugate export pumps in the canalicular membrane of mammalian liver.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ishikawa, T. Trends biochem. Sci. 17, 463–468 (1992).

    Article  CAS  Google Scholar 

  2. Sandermann, H. Trends biochem. Sci. 17, 82–84 (1992).

    Article  CAS  Google Scholar 

  3. Kobayashi, K., Sogame, Y., Hara, H. & Hazashi, K. J. biol. Chem. 265, 7737–7741 (1990).

    CAS  PubMed  Google Scholar 

  4. Kitamura, T. et al. Proc. natn. Acad. Sci. U.S.A. 87, 3557–3561 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Akerboom, T. P., Narayanaswami, V., Kunst, M. & Sies, H. J. biol. Chem. 266, 13147–13152 (1991).

    CAS  PubMed  Google Scholar 

  6. Schmitt, R. & Sandermann, H. Z. Naturforschung 37c, 772–777 (1982).

    Article  Google Scholar 

  7. Martinoia, E. Bot. Acta 105, 232–245 (1992).

    Article  CAS  Google Scholar 

  8. Sze, H. A. Rev. Pl. Physiol. 36, 175–208 (1985).

    Article  CAS  Google Scholar 

  9. Rea, P. A. & Sanders, D. Physiol. Plant. 71, 131–141 (1987).

    Article  CAS  Google Scholar 

  10. Bowman, E. J., Siebers, A. & Altendorf, K. H. Proc. natn. Acad. Sci. U.S.A. 85, 7972–7976 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Martinoia, E., Flügge, U. I., Kaiser, G., Heber, U. & Heldt, H. W. Biochim. biophys. Acta 806, 311–319 (1985).

    Article  CAS  Google Scholar 

  12. Serrano, R. A. Rev. Pl. Physiol. Plant molec. Biol. 40, 61–94 (1989).

    Article  CAS  Google Scholar 

  13. Hedrich, R. & Schroeder, J. A. Rev. Pl. Physiol. Plant molec. Biol. 40, 539–569 (1989).

    Article  Google Scholar 

  14. Rentsch, D. & Martinoia, E. Planta 184, 532–537 (1991).

    Article  CAS  Google Scholar 

  15. Barbier-Brygoo, H. et al. Biochim. biophys. Acta 819, 215–224 (1985).

    Article  CAS  Google Scholar 

  16. Luckner in Secondary Metabolism in Microorganisms, Plants and Animals 3rd edn 452 (Springer, Berlin, Heidelberg and New York, 1990).

    Book  Google Scholar 

  17. Nishida, T., Gatmaitan, Z., Che, M. & Arias, I. M. Proc. natn. Acad. Sci. U.S.A. 88, 6590–6594 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Stieger, B., O'Neill, B. & Meier, P. J. Biochem. J. 284, 67–74 (1992).

    Article  CAS  Google Scholar 

  19. Endicott, J. A. & Ling, V. A. Rev. Biochem. 58, 137–171 (1989).

    Article  CAS  Google Scholar 

  20. Hyde, S. C. et al. Nature 346, 362–365 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Ortiz, D. F. et al. EMBO J. 10, 3491–3499 (1992).

    Article  Google Scholar 

  22. Fahey, R. C., Newton, G. L. Dorian, R. & Kosower, E. M. Analyt. Biochem. 107, 1–10 (1980).

    Article  CAS  Google Scholar 

  23. Grill, E., Winnacker, E. L. & Zenk, M. H. Proc. natn. Acad. Sci. U.S.A. 84, 439–443 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Kaiser, G., Martinoia, E. & Wiemken, A. Z. Pflanzenphysiologie 107, 103–113 (1982).

    Article  CAS  Google Scholar 

  25. Fuerst, E. P. & Gronwald, J. W. Weed Sci. 34, 354–361 (1986).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinoia, E., Grill, E., Tommasini, R. et al. ATP-dependent glutathione S-conjugate 'export' pump in the vacuolar membrane of plants. Nature 364, 247–249 (1993). https://doi.org/10.1038/364247a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364247a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing