Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons

Abstract

Cation-selective P2X receptor channels were first described in sensory neurons1-4 where they are important for primary afferent neurotransmission and nociception5,6. Here we report the cloning of a complementary DNA (P2X3) from rat dorsal root ganglia that had properties dissimilar to those of sensory neurons. We also found RNA for (P2X1) (ref. 7), (P2X2) (ref. 8) and P2X4 (ref. 9) in sensory neurons; channels expressed from individual cDNAs did not reproduce those of sensory ganglia. Coexpression of P2X3 with P2X2, but not other combinations, yielded ATP-activated currents that closely resembled those in sensory neurons. These properties could not be accounted for by addition of the two sets of channels, indicating that a new channel had formed by subunit heteropoly-merization. Although in some tissues responses to ATP can be accounted for by homomeric channels1,7-10, our results indicate that ATP-gated channels of sensory neurons may form by a specific heteropolymerization of P2X receptor subunits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Surprenant, A., Buell, G. & North, R. A. Trends Neurosci. 18, 224–229 (1995).

    Article  CAS  Google Scholar 

  2. Abbracchio, M. P. & Burnstock, G. Pharmac. Ther. 64, 445–475 (1995).

    Article  Google Scholar 

  3. Jahr, C. E. & Jessell, T. M. Nature 304, 730–733 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Krishtal, O. A., Marchenko, S. M. & Pidoplichko, V. I. Neurosci. Lett. 35, 41–45 (19).

  5. Holton, F. A. & Holton, P. J. Physiol., Lond. 126, 124–140 (1954).

    Article  CAS  Google Scholar 

  6. Fyffe, R. E. W. & Perl, E. R. Proc. natn. Acad. Sci. U.S.A. 81, 6890–6893 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Valera, S. et al. Nature 371, 516–519 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Brake, A. J., Wagenbach, M. J. & Julius, D. Nature 371, 519–523 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Buell, G., Lewis, C., Collo, G., North, R. A. & Surprenant, A. Soc. Neurosci. Abstr. (In the press).

  10. Evans, R. J. et al. Molec. Pharmac. 48, 178–183 (1995).

    CAS  Google Scholar 

  11. Bean, B. P. J. Neurosci. 10, 1–10 (1990).

    Article  CAS  Google Scholar 

  12. Krishtal, O. A., Marchenko, S. M., Obukhov, A. G. & Volkova, T. M. Br. J. Pharmac. 95, 1057–1062 (1988).

    Article  CAS  Google Scholar 

  13. Khakh, B. S., Humphrey, P. P. A. & Surprenant. J. Physiol., Lond. 484, 385–395 (1995).

    Article  CAS  Google Scholar 

  14. Lewis, C., North, R. A., Buell, G. & Surprenant, A. Soc. Neurosci. Abstr. (in the press).

  15. Friel, D. D. J. Physiol., Lond. 401, 361–380 (1988).

    Article  CAS  Google Scholar 

  16. Khakh, B. S., Surprenant, A. & Humphrey, P. P. A. Br. J. Pharmac. 115, 117–185 (1995).

    Article  Google Scholar 

  17. Vulcanova, L. et al. Soc. Neurosci. Abstr. (in the press).

  18. Sprengel, R. & Seeburg, P. H. Ligand- and Voltage-gated Ion Channels (ed. North, R. A.) 213–263 (CRC, London, 1995).

    Google Scholar 

  19. Lindstrom, J. M. Ligand- and Voltage-gated Ion Channels (ed. North, R. A.) 153–175 (CRC, London, 1995).

    Google Scholar 

  20. Covarrubias, M., Wei, A. & Salkoff, L. Neuron 7, 763–773 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, C., Neidhart, S., Holy, C. et al. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377, 432–435 (1995). https://doi.org/10.1038/377432a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377432a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing