Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT

Abstract

The arylhydrocarbon-receptor nuclear translocator (ARNT) is a member of the basic-helix-loop-helix–PAS family of heterodimeric transcription factors which includes the arylhydrocarbon receptor (AHR), hypoxia-inducible factor-1α (HIF-1α) and the Drosophila single-minded protein (Sim)1–4. ARNT forms heterodimeric complexes with the arylhydrocarbon receptor, HIF-1α, Sim and the PAS protein Per2,4–6. In response to environmental pollutants, AHR–ARNT heterodimers regulate genes involved in the metabolism of xenobiotics7–9, whereas ARNT–HIF-1α heterodimers probably regulate those involved in the response to oxygen deprivation10–13. By generating a targeted disruption of the Arnt locus in the mouse, we show here that Arnt–/– embryonic stem cells fail to activate genes that normally respond to low oxygen tension. Arnt–/– ES cells also failed to respond to a decrease in glucose concentration, indicating that ARNT is crucial in the response to hypoxia and to hypoglycaemia. Arnt–/– embryos were not viable past embryonic day 10.5 and showed defective angiogenesis of the yolk sac and branchial arches, stunted development and embryo wasting. The defect in blood vessel formation in Arnt–/– yolk sacs is similar to the angiogenic abnormalities reported for mice deficient in vascular endothelial growth factor14,15 or tissue factor16. On the basis of these findings, we propose a model in which increasing tissue mass during organogenesis leads to the formation of hypoxic/nutrient-deprived cells, the subsequent activation of ARNT, and a concomitant increase in the expression of genes (including that encoding vascular endothelial growth factor) that promote vascularization of the developing yolk sac and solid tissues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burbach, K. M., Poland, A. & Bradfield, C. A. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc. Natl Acad. Sci. USA 89, 8185–8189 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Wang, G. L., Jiang, B.-H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix–PAS heterodimer regulated by cellular O.2 tension. Proc. Natl Acad. Sci. USA 92, 5510–5514 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Ema, M. et al. cDNA cloning of a murine homologue of Drosophila single-mided, its mRNA expression in mouse development, and chromosome localization. Biochem. Biophys. Res. Commun. 218, 588–594 (1996).

    Article  CAS  Google Scholar 

  4. Hoffman, E. C. et al. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252, 954–958 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Swanson, H. I., Chan, W. K. & Bradfield, C. A. DNA binding specificities and pairing rules of Ah receptor, ARNT, and SIM proteins. J. Biol. Chem. 270, 26292–26302 (1995).

    Article  CAS  Google Scholar 

  6. Sogawa, K. et al. Possible function of Ah receptor nuclear translocator (Arnt) homodimer in transcriptional regulation. Proc. Natl Acad. Sci. USA 92, 1936–1940 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Nebert, D. W. & Gonzales, F. J. P450 genes: structure, evolution, and regulation. Annu. Rev. Biochem. 56, 945–993 (1987).

    Article  CAS  Google Scholar 

  8. Telakowski-Hopkins, C., King, R. & Pickett, C. Glutathione S-transferase Ya subunit gene: identification of regulatory elements required for basal level and inducible expression. Proc. Natl Acad. Sci. USA 85, 1000–1004 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Hankinson, O. The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol. 35, 307–340 (1995).

    Article  CAS  Google Scholar 

  10. Wang, G. L. & Semenza, G. L. General involvement of hypoxia-inducible factor in transcriptinal response to hypoxia. Proc. Natl Acad. Sci. USA 90, 4304–4308 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Forsythe, J. A. et al. Activation of vesculer endothelial growth factor gene transcription by hypoxiainducible factor 1. Mol. Cell. Biol. 16, 4604–4613 (1995).

    Article  Google Scholar 

  12. Wang, G. L. & Semenza, G. L. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268, 21513–21518 (1993).

    CAS  PubMed  Google Scholar 

  13. Bunn, H. F. & Poyton, R. O. Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76, 839–885 (1996).

    Article  CAS  Google Scholar 

  14. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Carmeliet, P. et al. Role of tissue factor in embryonic blood vessel development. Nature 383, 73–75 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Mortensen, R., Conner, D., Chao, S., Geisterfer-Lowrance, A. & Seidman, J. Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12, 2391–2394 (1992).

    Article  CAS  Google Scholar 

  18. Shweiki, D., Itin, A., Softer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-intiated angiogenesis. Nature 359, 843–845 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Firth, J. D., Ebert, B. L., Pugh, C. W. & Ratcliffe, P. J. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: Similarities with the erythropoietin 3′ enhancer. Proc. Natl Acad. Sci. USA 91, 6496–6500 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Semenza, G. L., Roth, P. H., Fang, H.-M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23769 (1994).

    CAS  PubMed  Google Scholar 

  21. Wood, S. M., Gleadle, J. M., Pugh, C. W., Hankinson, O. & Ratcliffe, P. J. The role of aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxia induction of gene expression. J. Biol. Chem. 271, 15117–15123 (1996).

    Article  CAS  Google Scholar 

  22. Shweiki, D., Neeman, M., Itin, A. & Keshet, E. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: Implications for tumor angiogenesis. Proc. Natl Acad. Sci. USA 92, 768–772 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Stein, I., Neeman, M., Shweiki, D., Itin, A. & Keshet, E. Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol. Cell. Biol. 15, 5363–5368 (1995).

    Article  CAS  Google Scholar 

  24. Hirose, K. et al. cDNA cloning and tissue-specific expresison of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the Aryl hydrocarbon receptor nuclear translocator (Arnt). Mol. Cell. Biol. 16, 1706–1713 (1996).

    Article  CAS  Google Scholar 

  25. Compeau, C. G. et al. In situ ischemia and hypoxia enhance alveolar macrophage tissue factor expression. Am. J. Respir. Cell Mol. Biol. 11, 446–455 (1994).

    Article  CAS  Google Scholar 

  26. Clauss, M. et al. Vascular permeability factor: A tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J. Exp. Med. 172, 1535–1545 (1990).

    Article  CAS  Google Scholar 

  27. Zhang, Y. et al. Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice. J. Clin. Invest. 94, 1320–1327 (1994).

    Article  CAS  Google Scholar 

  28. Wilk, R., Weizman, I. & Shilo, B.-Z. trachealess encodes a bHLH-PAS protein that is an inducer of tracheal cell fates in Drosophila. Genes Dev. 10, 93–102 (1996).

    Article  CAS  Google Scholar 

  29. Isaac, D. D. & Andrew, D. J. Tubulogenesis in Drosophila: a requirement for the trachealess gene product. Genes Dev. 10, 103–117 (1996).

    Article  CAS  Google Scholar 

  30. Tybulewicz, V., Crawford, C., Jackson, P., Bronson, R. & Mulligan, R. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maltepe, E., Schmidt, J., Baunoch, D. et al. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403–407 (1997). https://doi.org/10.1038/386403a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386403a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing