Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pTAT-HA vector and purification protocol.
Figure 2: Analysis of transduced proteins.
Figure 3: In vivo biochemical and biological properties of transduced proteins.
Figure 4: Induction of cell scattering and filopodia by TAT-p27wt protein.

References

  1. Anderson, W.F. Human gene therapy. Nature 392, 25– 30 (1998).

    Article  CAS  Google Scholar 

  2. Bar-Sagi, D. Mammalian cell microinjection assay. Meth. Enzymol. 255, 436–442 (1995).

    Article  CAS  Google Scholar 

  3. Green, M. & Loewenstein, P.M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55, 1179– 1188 (1988).

    Article  CAS  Google Scholar 

  4. Frankel, A.D. & Pabo, C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189–1193 (1988).

    Article  CAS  Google Scholar 

  5. Fawell, S. et al. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci USA 91, 664– 668 (1994).

    Article  CAS  Google Scholar 

  6. Vives, E., Brodin, P. & Leblus, B. A truncated Tat basic domain rapidly translocates through the plasma membrane and accumulates in the nucleus. J. Biol. Chem. 272, 16010–16017 (1997).

    Article  CAS  Google Scholar 

  7. Elliott, G. & O'Hare, P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88, 223–233 (1997).

    Article  CAS  Google Scholar 

  8. Derossi, D., Joliot, A.H., Chassaings, G. & Prochiantz, A. The third helix of the antennapedia homodomain translocates through biological membranes. J. Biol. Chem. 269, 10444– 10450 (1994).

    CAS  PubMed  Google Scholar 

  9. Luo, Y., Hurwitz, J. & Massague, J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21cip1. Nature 375, 159–161 (1995).

    Article  CAS  Google Scholar 

  10. Van den Heuvel, S. & Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050–2054 (1993).

    Article  CAS  Google Scholar 

  11. Gottesman, S., Wickmer, S. & Maurizi, M.R. Protein quality control: Triage by chaperones and proteases. Genes Dev. 11, 815– 823 (1997).

    Article  CAS  Google Scholar 

  12. Schneider, C. et al. Pharmacologic shifting of a balance between protein refolding and degradation mediated by HSP90. Proc. Natl. Acad. Sci. USA 93, 14536–14541 (1996).

    Article  CAS  Google Scholar 

  13. Jeffers, M., Rong, S. & Vande Woude, G.F. Hepatocyte growth factor/scatter factor—Met signaling in tumorigenicity and invasion/metastasis. J. Mol. Med. 74, 505–513 ( 1996).

    Article  CAS  Google Scholar 

  14. Matsumoto, K. & Nakamura, T. Hepatocyte growth factor: Molecular structure, roles in liver regeneration, and other biological functions. Crit. Rev. Oncol. 3, 27–54 (1992).

    CAS  Google Scholar 

  15. Lissy, N.A. et al. TCR-antigen induced cell death (AID) occurs from a late G 1 phase cell-cycle check point. Immunity 8, 57–65 (1998).

    Article  CAS  Google Scholar 

  16. Ezhevsky, S.A. et al. Hypo-phosphorylation of the retinoblastoma protein by cyclin D:Cdk4/6 complexes results in active pRb. Proc. Natl. Acad. Sci. USA 94, 10699–10704 (1997).

    Article  CAS  Google Scholar 

  17. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295– 2322 (1997).

    Article  CAS  Google Scholar 

  18. Di Cunto, F. et al. Inhibitory function of p21cip1/waf1 in differentiation of primary mouse keratinocytes independent of cell cycle control. Science 280, 1069–1072 ( 1998).

    Article  CAS  Google Scholar 

  19. Fahraeus, R., Paramio, J.M., Ball, K.L., Lain, S. & Lane, D.P. Inhibition of pRb phosphorylation and cell-cycle progression by a 20-residue peptide derived from p16. Curr. Biol. 6, 84–91 ( 1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Roberts for wild-type p27 cDNA, J. Massague for p27 kkpv mutant cDNA; E. Harlow for Cdk2-DN cDNA; M. Dustin for confocal microscopy; and all members of the Dowdy lab for critical input. This work was supported by an NIH-MSTP fellowship (E.L.S.) and the Howard Hughes Medical Institute (S.F.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven F. Dowdy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagahara, H., Vocero-Akbani, A., Snyder, E. et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 4, 1449–1452 (1998). https://doi.org/10.1038/4042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/4042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing