Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Toll-like receptor 2–mediated NF-κB activation requires a Rac1-dependent pathway

Abstract

Mammalian Toll-like receptors (TLRs) are expressed on innate immune cells and respond to the membrane components of Gram-positive or Gram-negative bacteria. When activated, they convey signals to transcription factors that orchestrate the inflammatory response. However, the intracellular signaling events following TLR activation are largely unknown. Here we show that TLR2 stimulation by Staphylococcus aureus induces a fast and transient activation of the Rho GTPases Rac1 and Cdc42 in the human monocytic cell line THP-1 and in 293 cells expressing TLR2. Dominant-negative Rac1N17, but not dominant-negative Cdc42N17, block nuclear factor-κB (NF-κB) transactivation. S. aureus stimulation causes the recruitment of active Rac1 and phosphatidylinositol-3 kinase (PI3K) to the TLR2 cytosolic domain. Tyrosine phosphorylation of TLR2 is required for assembly of a multiprotein complex that is necessary for subsequent NF-κB transcriptional activity. A signaling cascade composed of Rac1, PI3K and Akt targets nuclear p65 transactivation independently of IκBα degradation. Thus Rac1 controls a second, IκB–independent, pathway to NF-κB activation and is essential in innate immune cell signaling via TLR2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HKSA activates Rac1 and Cdc42 transiently.
Figure 2: Rac1 controls NF-κB activation after TLR2 stimulation.
Figure 3: TLR2 cytosolic domain is associated with active Rac1.
Figure 4: PI3K is recruited by TLR2 and acts downstream of Rac1 in NF-κB activation.
Figure 5: TLR2 and PI3K form a signaling complex that is dependent on TLR2 tyrosine residues.
Figure 6: Rac1 regulates Akt activation by HKSA and subsequent NF-κB activation.
Figure 7: The Rac1 pathway regulates p65 transactivation independently of IκBα degradation.
Figure 8: Proposed model for Toll signaling to NF-κB.

Similar content being viewed by others

References

  1. Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  Google Scholar 

  2. Kopp, E. B. & Medzhitov, R. The Toll-receptor family and control of innate immunity. Curr. Op. Immunol. 11, 13–18 (1999).

    Article  CAS  Google Scholar 

  3. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. A human homologue of the Drosophilia Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  Google Scholar 

  4. Lemaitre, B., Reichhart, J. M. & Hoffmann, J. A. Drosophila host defense: differential induction of antimicrobial peptide genes after induction by various classes of microorganisms. Proc. Natl Acad. Sci. USA 94, 14614–14619 (1997).

    Article  CAS  Google Scholar 

  5. Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A., & Bazan, J. F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl Acad. Sci. USA 95, 588–593 (1998).

    Article  CAS  Google Scholar 

  6. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  Google Scholar 

  7. Yoshimura, A. et al. Recognition of Gram-positive bacterial wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163, 1–5 (1999).

    CAS  PubMed  Google Scholar 

  8. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. & Kirschning, C. J. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J. Biol. Chem. 274, 17406–17409 (1999).

    Article  CAS  Google Scholar 

  9. Brightbill, H. D. et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285, 732–736 (1999).

    Article  CAS  Google Scholar 

  10. Kirschning, C. J., Wesche, H., Ayres, T. M. & Rothe, M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J. Exp. Med. 188, 2091–2097 (1998).

    Article  CAS  Google Scholar 

  11. Yang, R. -B. et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signaling. Nature 395, 284–288 (1998).

    Article  CAS  Google Scholar 

  12. Hirschfeld, M., Ma, Y., Weis, J. H., Vogel, S. N. & Weis, J. J. Repurification of lipopolysaccharide eliminates signaling through both human and murine Toll-like receptor 2. J. Immunol. 165, 618–622 (2000).

    Article  CAS  Google Scholar 

  13. Bowie, A. & O'Neil, L. A. J. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J. Leukoc. Biol. 67, 508–514 (2000).

    Article  CAS  Google Scholar 

  14. Irie, T., Muta, T. & Takeshige, K. TAK1 mediates an activation signal from toll-like receptors to nuclear factor-κB in lipopolysaccharide-stimulated macrophages. FEBS Lett. 467, 160–164 (2000).

    Article  CAS  Google Scholar 

  15. Mercurio, F. & Manning, A. M. Multiple signals converging on NF-κB. Curr. Op. Cell Biol. 11, 226–232 (1999).

    Article  CAS  Google Scholar 

  16. Zandi, E. & Karin, M. Bridging the gap: composition, regulation, and physiological function of the IκB kinase complex. Mol. Cell. Biol. 19, 4547–4551 (1999).

    Article  CAS  Google Scholar 

  17. Zhong, H., Sutang, H., Erdjument-Bromage, H., Tempst, P. & Ghosh, S. The transcriptional activity of NF-κB is regulated by the IκB-associated PKA subunit through a cyclic AMP-dependent mechanism. Cell 89, 413–424 (1997).

    Article  CAS  Google Scholar 

  18. Van der Berghe, W. et al. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor κB p65 transactivation mediated by tumor necrosis factor. J. Biol. Chem. 273, 3285–3290 (1998).

    Article  Google Scholar 

  19. Sizemore, N., Leung S. & Stark, G. R. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-κB p65/RelA subunit. Mol. Cell. Biol. 19, 4798–4805 (1999).

    Article  CAS  Google Scholar 

  20. Jefferies, C. A. & O'Neill, L. A. J. Rac1 regulates Interleukin 1-induced nuclear factor κB activation in an inhibitory protein κB-independent manner by enhancing the ability of the p65 subunit to transactivate gene expression. J. Biol. Chem. 275, 3114–3120 (2000).

    Article  CAS  Google Scholar 

  21. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295–2322 (1997).

    Article  CAS  Google Scholar 

  22. Chen, L. -M., Hobbie, S. & Galan, J. E. Requirement of Cdc42 for Salmonella-induced cytoskeletal and nuclear responses. Science 274, 2115–2118 (1996).

    Article  CAS  Google Scholar 

  23. Lee, D. J., Cox, D., Li, J. & Greenberg, S. Rac1 and Cdc42 are required for phagocytosis but not NF-κB-dependent gene expression, in macrophages challenged with Pseudomonas aeruginosa. J. Biol. Chem. 275, 141–146 (2000).

    Article  CAS  Google Scholar 

  24. Knaus, U. G., Heyworth, P. G., Evans, T., Curnutte, J. T. & Bokoch, G. M. Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254, 1512–1515 (1991).

    Article  CAS  Google Scholar 

  25. Roberts, A. W. et al. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10, 183–196 (1999).

    Article  CAS  Google Scholar 

  26. Sulciner, D. J., Irani, K., Ferrans, V. J., Goldschmidt-Clermont, P. & Finkel, T. Rac1 regulates a cytokine-stimulated, redox-dependent pathway necessary for NF-κB activation. Mol. Cell. Biol. 16, 7115–7121 (1996).

    Article  CAS  Google Scholar 

  27. Perona, R. et al. Activation of the nuclear factor-κB by Rho, Cdc42, and Rac1 proteins. Genes Dev. 11, 463–475 (1997).

    Article  CAS  Google Scholar 

  28. Fruman, D. A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    Article  CAS  Google Scholar 

  29. Benard, V., Bohl, B. J. & Bokoch, G. M. Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J. Biol. Chem. 274, 13198–13204 (1999).

    Article  CAS  Google Scholar 

  30. Zenke, F., King, C. C., Bohl, B. P. & Bokoch, G. M. Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J. Biol. Chem. 274, 32565–32573 (1999).

    Article  CAS  Google Scholar 

  31. Mira, J. -P., Benard, V., Groffen, J., Sanders, L. C. & Knaus, U. G. Endogenous hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc. Natl Acad. Sci. USA 97, 185–189 (2000).

    Article  CAS  Google Scholar 

  32. Carpenter, C. L. & Cantley, L. C. Phosphoinositide kinases. Curr. Opin. Biol. 8, 153–157 (1996).

    Article  CAS  Google Scholar 

  33. Zheng, Y., Bagrodia, S. & Cerione, R.A. Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85. J. Biol. Chem. 269, 18727–18730 (1994).

    CAS  PubMed  Google Scholar 

  34. Bokoch, G. M., Vlahos, C. J., Wang, Y., Knaus, U. G. & Traynor-Kaplan, A. E. Rac GTPase interacts specifically with phosphatidylinositol 3-kinase. Biochem. J. 315,775–779 (1996).

    Article  CAS  Google Scholar 

  35. Kandel, E. S. & Hay, N. The regulation and activities of the multifunctional Serine/Threonine kinase Akt/PKB. Exp. Cell Res. 253, 210–229 (1999).

    Article  CAS  Google Scholar 

  36. Muzio, M., Natoli G., Saccani, S., Levrero, M. & Mantovani. The human toll signaling pathway: divergence of nuclear factor κB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J. Exp. Med. 187, 2097–2101 (1998).

    Article  CAS  Google Scholar 

  37. Montaner, S., Perona, R., Saniger, L. & Lacal, J. C. Multiple signaling pathways lead to the activation of the NF-κB by the Rho family of GTPases. J. Biol. Chem. 273, 12779–12785 (1998).

    Article  CAS  Google Scholar 

  38. Singh, R. et al. The IL-1 receptor and Rho directly associate to drive cell activation in inflammation. J. Clin. Invest. 103, 1561–1570 (1999).

    Article  CAS  Google Scholar 

  39. Puls, A. et al. Activation of the small GTPase Cdc42 by the inflammatory cytokines TNF and IL-1, and by the Epstein-Barr virus transforming protein LMP1. J. Cell Sci. 112, 2983–2992 (1999).

    CAS  PubMed  Google Scholar 

  40. Vollebregt, M., Hampton, M. B. & Winterbourn, C. C. Activation of NF-κB in human neutrophils during phagocytosis of bacteria independently of oxidant generation. FEBS Lett. 432, 40–44 (1998).

    Article  CAS  Google Scholar 

  41. Bird, T. A., Schooley, K., Dower, S. K., Hagen, H. & Virca, G. D. Activation of the transcription factor NF-κB by interleukin 1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J. Biol. Chem. 272, 32606–32612 (1997).

    Article  CAS  Google Scholar 

  42. Madrid, L.V. et al. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-κB. Mol. Cell. Biol. 20, 1626–1638 (2000).

    Article  CAS  Google Scholar 

  43. Sahl, B., Wagey, R., Marotta, A., Tao, J. S. & Pelech, S. Activation of phosphatidylinositol 3-kinase, protein kinase B, and p70 S6 kinase in lipopolysaccharide-stimulated Raw 264.7 cells: differential effects of rapamycin, Ly294002, and wortmannin on nitric oxide production. J. Immunol. 161, 6947–6954 (1998).

    Google Scholar 

  44. Reddy, S. A. G., Huang, J. H. & Liao, W. S.-L. Phosphatidylinositol 3-kinase in interleukin 1 signaling. J. Biol. Chem. 272, 29167–29173 (1997).

    Article  CAS  Google Scholar 

  45. Ozes, O. N. et al. NF-κB activation by tumor necrosis factor requires the Akt serine-threonine kinase. Nature 401, 82–86 (1999).

    Article  CAS  Google Scholar 

  46. Romashkova, J. A. & Makarov, S.S. NF-κB is a target of Akt in anti-apoptotic PDGF signaling. Nature 401, 86–90 (1999).

    Article  CAS  Google Scholar 

  47. Schiff, D. E. et al. Phagocytosis of Gram-negative bacteria by a unique CD14-dependent mechanism. J. Leuko. Biol. 62, 786–794 (1997).

    Article  CAS  Google Scholar 

  48. Mercurio, F. et al. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-κB activation. Science 278, 860–866 (1997).

    Article  CAS  Google Scholar 

  49. Sakurai, H., Chiba, H., Miyoshi, H., Sugita, T. & Toriumi, W. IκB kinases phosphorylate NF-κB p65 subunit on serine 536 in the transactivation domain. J. Biol. Chem. 274, 30353–30356 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Rutledge for excellent secretarial support. Supported by NIH grants GM 37696 (to U. G. K. and to R. J. U.), GM 28485 and AI 15136 (to R. J. U.), HL48872 (to N.M.). N. T. is the recipient of a Boehringer Ingelheim Fonds fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Ulevitch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbibe, L., Mira, JP., Teusch, N. et al. Toll-like receptor 2–mediated NF-κB activation requires a Rac1-dependent pathway. Nat Immunol 1, 533–540 (2000). https://doi.org/10.1038/82797

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing