Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dancing to the tune of chemokines

Abstract

Since their discovery 13 years ago, chemokines have emerged as the most important regulators of leukocyte trafficking. On target cells, chemokines bind to seven-transmembrane-domain receptors that are coupled to heterotrimeric Gi proteins. The common response of all cells to chemokine stimulation is chemotaxis. In addition, leukocyte activation triggers diverse signal transduction cascades; which cascade is triggered depends on the chemokine and receptor engaged. The selective activation of distinct pathways suggests that the receptors couple not only to G proteins but also to additional downstream effectors. This review discusses recent advances in the elucidation of the signal transduction that occurs in proximity to receptors and that leads to the early biochemical events in leukocyte activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coreceptor activity.
Figure 2: Chemokine receptor signaling.
Figure 3: Receptor aggregation state–regulated signaling.

Similar content being viewed by others

References

  1. Murphy, P. M. et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 52, 145–176 (2000).

    CAS  PubMed  Google Scholar 

  2. Thelen, M. et al. Mechanism of neutrophil activation by NAF, a novel monocyte-derived peptide agonist. FASEB J. 2, 2702–2706 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Boulay, F., Tardif, M., Brouchon, L. & Vignais, P. The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G- protein-coupled receptors. Biochemistry 29, 11123–11133 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Holmes, W. E., Lee, J., Kuang, W.-J., Rice, G. C. & Wood, W. I. Structure and functional expression of a human interleukin-8 receptor. Science 253, 1278–1280 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Murphy, P. M. & Tiffany, H. L. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 253, 1280–1283 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Palczewski, K. et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Berger, E. A., Murphy, P. M. & Farber, J. M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 17, 657–700 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Amara, A. et al. HIV coreceptor downregulation as antiviral principle: SDF-1α-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J. Exp. Med. 186, 139–146 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuhmann, S. E., Platt, E. J., Kozak, S. L. & Kabat, D. Cooperation of multiple CCR5 coreceptors is required for infections by human immunodeficiency virus type 1. J. Virol. 74, 7005–7015 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ugolini, S. et al. HIV-1 gp120 induces an association between CD4 and the chemokine receptor CXCR4. J. Immunol. 159, 3000–3008 (1997).

    CAS  PubMed  Google Scholar 

  11. Davis, C. B. et al. Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J. Exp. Med. 186, 1793–1798 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cicala, C. et al. Induction of phosphorylation and intracellular association of CC chemokine receptor 5 and focal adhesion kinase in primary human CD4+ T cells by macrophage-tropic HIV envelope. J. Immunol. 163, 420–426 (1999).

    CAS  PubMed  Google Scholar 

  13. Bacon, K. B., Premack, B. A., Gardner, P. & Schall, T. J. Activation of dual T cell signaling pathways by the chemokine RANTES. Science 269, 1727–1730 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, D., LaRosa, G. J. & Simon, M. I. G protein-coupled signal transduction pathways for interleukin-8. Science 261, 101–103 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Jones, S. A., Wolf, M., Qin, S., Mackay, C. R. & Baggiolini, M. Different functions for the interleukin 8 receptors (IL-8R) of human neutrophil leukocytes: NADPH oxidase and phospholipase D are activated through IL-8R1 but not IL-8R2. Proc. Natl Acad. Sci. USA 93, 6682–6686 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fanning, A. S. & Anderson, J. M. PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J. Clin. Invest. 103, 767–772 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hall, R. A. et al. The β2-adrenergic receptor interacts with the Na+/H+- exchanger regulatory factor to control Na+/H+ exchange. Nature 392, 626–630 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Cao, T. T., Deacon, H. W., Reczek, D., Bretscher, A. & von Zastrow, M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor. Nature 401, 286–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Vicente-Manzanares, M. et al. The chemokine SDF-1α triggers a chemotactic response and induces cell polarization in human B lymphocytes. Eur. J. Immunol. 28, 2197–2207 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Nieto, M. et al. Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis. J. Exp. Med. 186, 153–158 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Servant, G., Weiner, O. D., Neptune, E. R., Sedat, J. W. & Bourne, H. R. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol. Biol. Cell 10, 1163–1178 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiao, Z., Zhang, N., Murphy, D. B. & Devreotes, P. N. Dynamic distribution of chemoattractant receptors in living cells during chemotaxis and persistent stimulation. J. Cell Biol. 139, 365–374 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B. & Devreotes, P. N. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95, 81–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Meili, R. et al. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J. 18, 2092–2105 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meinhardt, H. Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci. 112, 2867–2874 (1999).

    CAS  PubMed  Google Scholar 

  27. Neptune, E. R., Iiri, T. & Bourne, H. R. Gαi is not required for chemotaxis mediated by Gi-coupled receptors. J. Biol. Chem. 274, 2824–2828 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Neptune, E. R. & Bourne, H. R. Receptors induce chemotaxis by releasing the βγ subunit of Gi, not by activating Gq or Gs . Proc. Natl Acad. Sci. USA 94, 14489–14494 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin, T., Zhang, N., Long, Y., Parent, C. A. & Devreotes, P. N. Localization of the G protein βγ complex in living cells during chemotaxis. Science 287, 1034–1036 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Baggiolini, M., Dewald, B. & Moser, B. Human chemokines: An update. Annu. Rev. Immunol. 15, 675–705 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Rhee, S. G. & Bae, Y. S. Regulation of phosphoinositide-specific phospholipase C isozymes. J. Biol. Chem. 272, 15045–15048 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Sankaran, B., Osterhout, J., Wu, D. Q. & Smrcka, A. V. Identification of a structural element in phospholipase C β2 that interacts with G protein βγ subunits. J. Biol. Chem. 273, 7148–7154 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Barr, A. J., Ali, H., Haribabu, B., Snyderman, R. & Smrcka, A. V. Identification of a region at the N-terminus of phospholipase C-β3 that interacts with G protein βγ subunits. Biochemistry 39, 1800–1806 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Mandeville, J. T. & Maxfield, F. R. Effects of buffering intracellular free calcium on neutrophil migration through three-dimensional matrices. J. Cell Physiol. 171, 168–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Orsini, M. J., Parent, J. L., Mundell, S. J., Benovic, J. L. & Marchese, A. Trafficking of the HIV coreceptor CXCR4. Role of arrestins and identification of residues in the c-terminal tail that mediate receptor internalization. J. Biol. Chem. 274, 31076–31086 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Signoret, N. et al. Phorbol esters and SDF-1 induce rapid endocytosis and down modulation of the chemokine receptor CXCR4. J. Cell Biol. 139, 651–664 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Richardson, R. M. et al. Regulation of human interleukin-8 receptor A: Identification of a phosphorylation site involved in modulating receptor functions. Biochemistry 34, 14193–14201 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Stephens, L. et al. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits. Cell 77, 83–93 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Stoyanov, B. et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269, 690–693 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Stephens, L. E. et al. The Gβγ-sensitivity of a PI3K is dependent upon a tightly-associated adaptor, p101. Cell 89, 105–114 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Ward, S. G., Bacon, K. & Westwick, J. Chemokines and T lymphocytes: more than an attraction. Immunity 9, 1–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Tilton, B. et al. Signal transduction by CXC chemokine receptor 4. Stromal cell-derived factor 1 stimulates prolonged protein kinase b and extracellular signal-regulated kinase 2 activation in t lymphocytes. J. Exp. Med. 192, 313–324 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049–1053 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Fruman, D. A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Bottomley, M. J., Salim, K. & Panayotou, G. Phospholipid-binding protein domains. Biochim. Biophys. Acta 1436, 165–183 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Burgering, B. M. T. & Coffer, P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Didichenko, S. A., Tilton, B., Hemmings, B. A., Ballmer-Hofer, K. & Thelen, M. Constitutive activation of protein kinase B and phosphorylation of p47phox by membrane-targeted phosphoinositide 3-kinase. Curr. Biol. 6, 1271–1278 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Hemmings, B. A. Update: Signal transduction - PtdIns(3,4,5)P3 gets its message across. Science 277, 534–534 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Chan, T. O., Rittenhouse, S. E. & Tsichlis, P. N. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem. 68, 965–1014 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Frech, M. et al. High affinity binding of inositol phosphates and phosphoinositides to the pleckstin homology domain of RAC/protein kinase B and their influence on kinase activity. J. Biol. Chem. 272, 8474–8481 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Klippel, A., Kavanaugh, W. M., Pot, D. & Williams, L. T. A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol. Cell Biol. 17, 338–344 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Toker, A. & Newton, A. C. Cellular signaling: pivoting around PDK-1. Cell 103, 185–188 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Alessi, D. R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol. 7, 261–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Tilton, B., Andjelkovic, M., Didichenko, S. A., Hemmings, B. A. & Thelen, M. G-protein-coupled receptors and Fcγ-receptors mediate activation of Akt protein kinase B in human phagocytes. J. Biol. Chem. 272, 28096–28101 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Thelen, M., Uguccioni, M. & Bösiger, J. PI 3-kinase-dependent and independent chemotaxis of human neutrophil leukocytes. Biochem. Biophys. Res. Commun. 217, 1255–1262 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Wymann, M. P. et al. Oscillatory motion in human neutrophils responding to chemotactic stimuli. Biochem. Biophys. Res. Commun. 147, 361–368 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Knall, C. et al. Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J. Biol. Chem. 271, 2832–2838 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Huang, R. Y., Lian, J. P., Robinson, D. & Badwey, J. A. Neutrophils stimulated with a variety of chemoattractants exhibit rapid activation of p21-activated kinases (Paks): Separate signals are required for activation and inactivation of Paks. Mol. Cell Biol. 18, 7130–7138 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jones, S. A., Moser, B. & Thelen, M. A comparison of post-receptor signal transduction events in Jurkat cells transfected with either IL-8R1 or IL-8R2: Chemokine mediated activation of p42/p44 MAP-kinase (ERK- 2). FEBS Lett. 364, 211–214 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Lopez-Ilasaca, M., Crespo, P., Pellici, P. G., Gutkind, J. S. & Wetzker, R. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI3-kinase γ. Science 275, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Bondeva, T. et al. Bifurcation of lipid and protein kinase signals of PI3Kγ to the protein kinases PKB and MAPK. Science 282, 293–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Ma, Y. C., Huang, J., Ali, S., Lowry, W. & Huang, X. Y. Src tyrosine kinase is a novel direct effector of G proteins. Cell 102, 635–646 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Kehrl, J. H. Heterotrimeric G protein signaling: Roles in immune function and fine-tuning by RGS proteins. Immunity 8, 1–10 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Thomas, S. M. & Brugge, J. S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513–609 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Sicheri, F. & Kuriyan, J. Structures of Src-family tyrosine kinases. Curr. Opin. Struct. Biol. 7, 777–785 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Dikic, I., Dikic, I. & Schlessinger, J. Identification of a new Pyk2 isoform implicated in chemokine and antigen receptor signaling. J. Biol. Chem. 273, 14301–14308 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Ganju, R. K. et al. The α-chemokine, stromal cell-derived factor-1α, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J. Biol. Chem. 273, 23169–23175 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, J. F., Park, I. W. & Groopman, J. E. Stromal cell-derived factor-1α stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. Blood 95, 2505–2513 (2000).

    CAS  PubMed  Google Scholar 

  71. Bacon, K. B., Szabo, M. C., Yssel, H., Bolen, J. B. & Schall, T. J. RANTES induces tyrosine kinase activity of stably complexed p125FAK and ZAP-70 in human T cells. J. Exp. Med. 184, 873–882 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Bauer, P. H. et al. Interactions of phosducin with the subunits of G-proteins - Binding to the α as well as the β γ subunits. J. Biol. Chem. 273, 9465–9471 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. De Vries, L., Zheng, B., Fischer, T., Elenko, E. & Farquhar, M. G. The regulator of G protein signaling family. Annu. Rev. Pharmacol. Toxicol. 40, 235–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Bowman, E. P. et al. Regulation of chemotactic and proadhesive responses to chemoattractant receptors by RGS (Regulator of G-protein Signaling) family members. J. Biol. Chem. 273, 28040–28048 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Reif, K. & Cyster, J. G. RGS molecule expression in murine B lymphocytes and ability to down-regulate chemotaxis to lymphoid chemokines. J Immunol. 164, 4720–4729 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Pitcher, J. A., Freedman, N. J. & Lefkowitz, R. J. G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Zlotnik, A., Morales, J. & Hedrick, J. A. Recent advances in chemokines and chemokine receptors. Crit. Rev. Immunol. 19, 1–47 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Oppermann, M., Mack, M., Proudfoot, A. E. & Olbrich, H. Differential effects of CC chemokines on CC chemokine receptor 5 (CCR5) phosphorylation and identification of phosphorylation sites on the CCR5 carboxyl terminus. J. Biol. Chem. 274, 8875–8885 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Aragay, A. M. et al. Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2. Proc. Natl Acad. Sci. USA 95, 2985–2990 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Grimm, M. C. et al. Opiates transdeactivate chemokine receptors: δ and μ opiate receptor-mediated heterologous desensitization. J. Exp. Med. 188, 317–325 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Haribabu, B. et al. Regulation of human chemokine receptors CXCR4 - Role of phosphorylation in desensitization and internalization. J. Biol. Chem. 272, 28726–28731 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Luttrell, L. M., Daaka, Y. & Lefkowitz, R. J. Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr. Opin. Cell Biol 11, 177–183 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. AbdAlla, S., Zaki, E., Lother, H. & Quitterer, U. Involvement of the amino terminus of the B(2) receptor in agonist- induced receptor dimerization. J. Biol. Chem. 274, 26079–26084 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. AbdAlla, S., Lother, H. & Quitterer, U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407, 94–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Overton, M. C. & Blumer, K. J. G-protein-coupled receptors function as oligomers in vivo. Curr. Biol. 10, 341–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Vila-Coro, A. J. et al. HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc. Natl Acad. Sci. USA 97, 3388–3393 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Herbert, T. E. et al. A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J. Biol. Chem. 271, 16384–16392 (1996).

    Article  Google Scholar 

  88. Rodriguez-Frade, J. M. et al. The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc. Natl Acad. Sci. USA 96, 3628–3633 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vila-Coro, A. J. et al. The chemokine SDF-1α triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. 13, 1699–1710 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Feniger-Barish, R. et al. GCP-2-induced internalization of IL-8 receptors: hierarchical relationships between GCP-2 and other ELR(+)-CXC chemokines and mechanisms regulating CXCR2 internalization and recycling. Blood 95, 1551–1559 (2000).

    CAS  PubMed  Google Scholar 

  91. Giannini, E. & Boulay, F. Phosphorylation, dephosphorylation, and recycling of the C5a receptor in differentiated HL60 cells. J. Immunol. 154, 4055–4064 (1995).

    CAS  PubMed  Google Scholar 

  92. Ali, H., Richardson, R. M., Haribabu, B. & Snyderman, R. Chemoattractant receptor cross-desensitization. J. Biol. Chem. 274, 6027–6030 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Richardson, R. M., Ali, H., Pridgen, B. C., Haribabu, B. & Snyderman, R. Multiple signaling pathways of human interleukin-8 receptor A - Independent regulation by phosphorylation. J. Biol. Chem. 273, 10690–10695 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Ali, H. et al. Differential regulation of formyl peptide and platelet-activating factor receptors - Role of phospholipase Cβ3 phosphorylation by protein kinase A. J. Biol. Chem. 273, 11012–11016 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Shen, W. et al. Down-regulation of the chemokine receptor CCR5 by activation of chemotactic formyl peptide receptor in human monocytes. Blood 96, 2887–2894 (2000).

    CAS  PubMed  Google Scholar 

  96. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Jordan, B. A. & Devi, L. A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697–700 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ilangumaran, S., He, H. T. & Hoessli, D. C. Microdomains in lymphocyte signalling: beyond GPI-anchored proteins. Immunol. Today 21, 2–7 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Nanki, T. & Lipsky, P. E. Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation. J. Immunol. 164, 5010–5014 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Jordan, J. D., Landau, E. M. & Iyengar, R. Signaling networks: the origins of cellular multitasking. Cell 103, 193–200 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Ptasznik, A. et al. A tyrosine kinase signaling pathway accounts for the majority of phosphatidylinositol 3,4,5-trisphosphate formation in chemoattractant-stimulated human neutrophils. J. Biol. Chem. 271, 25204–25207 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Mellado, M. et al. The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J. Immunol. 161, 805–813 (1998).

    CAS  PubMed  Google Scholar 

  104. Luttrell, L. M. et al. β-arrestin-dependent formation of β2 adrenergic receptor Src protein kinase complexes. Science 283, 655–661 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks B. Dewald for critical reading and comments. Supported by the Swiss Science Foundation (NFP-38) and the Helmut Horten Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thelen, M. Dancing to the tune of chemokines. Nat Immunol 2, 129–134 (2001). https://doi.org/10.1038/84224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/84224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing