Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56

Abstract

Acute myeloid leukemia with high ecotropic viral integration site-1 expression (EVI1high AML) is classified as a refractory type of leukemia with a poor prognosis. To provide new insights into the prevention and treatment of this disease, we identified the high expression of EVI1-regulated G protein-coupled receptor 56 (GPR56), and the association of high cell adhesion and antiapoptotic activities in EVI1high AML cells. Knockdown of GPR56 expression decreased the cellular adhesion ability through inactivation of RhoA signaling, resulting in a reduction of cellular growth rates and enhanced apoptosis. Moreover, in Gpr56−/− mice, the number of hematopoietic stem cells (HSCs) was significantly decreased in the bone marrow (BM) and, conversely, was increased in the spleen, liver and peripheral blood. The number of Gpr56−/− HSC progenitors in the G0/G1-phase was significantly reduced and was associated with impaired cellular adhesion. Finally, the loss of GPR56 function resulted in a reduction of the in vivo repopulating ability of the HSCs. In conclusion, GPR56 may represent an important GPCR for the maintenance of HSCs by acting as a co-ordinator of interactions with the BM osteosteal niche; furthermore, this receptor has the potential to become a novel molecular target in EVI1high leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007; 25: 1315–1321.

    Article  CAS  Google Scholar 

  2. Lane SW, Scadden DT, Gilliland DG . The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 2009; 114: 1150–1157.

    Article  CAS  Google Scholar 

  3. Morishita K, Parker DS, Mucenski ML, Jenkins NA, Copeland NG, Ihle JN . Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 1988; 54: 831–840.

    Article  CAS  Google Scholar 

  4. Morishita K, Parganas E, William CL, Whittaker MH, Drabkin H, Oval J et al. Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilobases on chromosome band 3q26. Proc Natl Acad Sci USA. 1992; 89: 3937–3941.

    Article  CAS  Google Scholar 

  5. Lugthart S, Gröschel S, Beverloo HB, Kayser S, Valk PJ, van Zelderen-Bhola SL et al. Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia. J Clin Oncol 2010; 28: 3890–3898.

    Article  Google Scholar 

  6. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, Valk PJ, van der Poel-van de Luytgaarde S, Hack R et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 2003; 101: 837–845.

    Article  Google Scholar 

  7. Lugthart S, van Drunen E, van Norden Y, van Hoven A, Erpelinck CA, Valk PJ et al. High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 2008; 111: 4329–4337.

    Article  CAS  Google Scholar 

  8. Groschel S, Lugthart S, Schlenk RF, Valk PJ, Eiwen K, Goudswaard C et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol 2010; 28: 2101–2107.

    Article  Google Scholar 

  9. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  Google Scholar 

  10. Verhaak RG, Wouters BJ, Erpelinck CA, Abbas S, Beverloo HB, Lugthart S et al. Prediction of molecular subtype in acute myeloid leukemia based on gene expression profiling. Haematologica 2009; 94: 131–134.

    Article  Google Scholar 

  11. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 2011; 17: 1086–1093.

    Article  CAS  Google Scholar 

  12. Yuasa H, Oike Y, Iwama A, Nishikata I, Sugiyama D, Perkins A et al. Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J. 2005; 24: 1976–1987.

    Article  CAS  Google Scholar 

  13. Goyama S, Yamamoto G, Shimabe M, Sato T, Ichikawa M, Ogawa S et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 2008; 3: 207–220.

    Article  CAS  Google Scholar 

  14. Saito Y, Nakahata S, Yamakawa N, Kaneda K, Ichihara E, Suekane A et al. CD52 as a molecular target for immunotherapy to treat acute myeloid leukemia with high EVI1 expression. Leukemia 2011; 25: 921–931.

    Article  CAS  Google Scholar 

  15. Yamakawa N, Kaneda K, Saito Y, Ichihara E, Morishita K . The increased expression of integrin a6 (ITGA6) enhances drug resistance in EVI1high leukemia. PLoS ONE 2012; 7: e30706.

    Article  CAS  Google Scholar 

  16. Ichihara E, Kaneda K, Saito Y, Yamakawa N, Morishita K . Angiopoietin1 contributes to the maintenance of cell quiescence in EVI1high leukemia cells. BBRC 2011; 416: 239–245.

    CAS  PubMed  Google Scholar 

  17. Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R et al. G protein-coupled receptor-dependent development of human frontal cortex. Science 2004; 303: 2033–2036.

    Article  CAS  Google Scholar 

  18. Li S, Jin Z, Koirala S, Bu L, Xu L, Hynes RO et al. GPR56 regulates pial basement membrane integrity and cortical lamination. J Neurosci 2008; 28: 5817–5826.

    Article  CAS  Google Scholar 

  19. Koirala S, Jin Z, Piao X, Corfas G . GPR56-regulated granule cell adhesion is essential for rostral cerebellar development. J Neurosci 2009; 29: 7439–7449.

    Article  CAS  Google Scholar 

  20. Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H . Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem 2008; 283: 14469–14478.

    Article  CAS  Google Scholar 

  21. Shashidhar S, Lorente G, Nagavarapu U, Nelson A, Kuo J, Cummins J et al. GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene 2005; 24: 1673–1682.

    Article  CAS  Google Scholar 

  22. Xu L, Begum S, Hearn JD, Hynes RO . GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci USA 2006; 103: 9023–9028.

    Article  CAS  Google Scholar 

  23. Ke N, Sundaram R, Liu G, Chionis J, Fan W, Rogers C et al. Orphan G protein-coupled receptor GPR56 plays a role in cell transformation and tumorigenesis involving the cell adhesion pathway. Mol Cancer Ther 2007; 6: 1840–1850.

    Article  CAS  Google Scholar 

  24. Terskikh AV, Easterday MC, Li L, Hood L, Kornblum HI, Geschwind DH et al. From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc Natl Acad Sci USA 2001; 98: 7934–7939.

    Article  CAS  Google Scholar 

  25. Yang FC, Atkinson SJ, Gu Y, Borneo JB, Roberts AW, Zheng Y et al. Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization. Proc Natl Acad Sci USA 2001; 98: 5614–5618.

    Article  CAS  Google Scholar 

  26. Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA . Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 2005; 11: 886–891.

    Article  CAS  Google Scholar 

  27. Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 2003; 302: 445–449.

    Article  CAS  Google Scholar 

  28. Ghiaur G, Lee A, Bailey J, Cancelas JA, Zheng Y, Williams DA . Inhibition of RhoA GTPase activity enhances hematopoietic stem and progenitor cell proliferation and engraftment. Blood 2006; 108: 2087–2094.

    Article  CAS  Google Scholar 

  29. Yang L, Wang L, Geiger H, Cancelas JA, Mo J, Zheng Y . Rho GTPase Cdc42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone marrow. Proc Natl Acad Sci USA 2007; 104: 5091–5096.

    Article  CAS  Google Scholar 

  30. Ghiaur G, Ferkowicz MJ, Milsom MD, Bailey J, Witte D, Cancelas JA et al. Rac1 is essential for intraembryonic hematopoiesis and for the initial seeding of fetal liver with definitive hematopoietic progenitor cells. Blood 2008; 111: 3313–3321.

    Article  CAS  Google Scholar 

  31. Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X . G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci USA 2011; 108: 12925–12930.

    Article  CAS  Google Scholar 

  32. Xu H, Eleswarapu S, Geiger H, Szczur K, Daria D, Zheng Y et al. Loss of Rho GTPase activating protein p190-B enhances hematopoietic stem cell engraftment potential. Blood 2009; 114: 3557–3566.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Genentech for providing the Gpr56 knockout mice for the studies. This work was supported by a grant-in-aid for the third term comprehensive 10-year strategy for cancer control from the Ministry of Health and Welfare; a grant-in-aid for scientific research from The Ministry of Education, Culture, Sports, Science and Technology; a grant-in-aid for scientific research from the Japan Society for the Promotion of Science; and a Grant-in-Aid for Scientific Research on Innovative Areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Morishita.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, Y., Kaneda, K., Suekane, A. et al. Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56. Leukemia 27, 1637–1649 (2013). https://doi.org/10.1038/leu.2013.75

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.75

Keywords

This article is cited by

Search

Quick links