Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unlocking the molecular secrets of sodium-coupled transporters

Abstract

Transmembrane sodium-ion gradients provide energy that can be harnessed by 'secondary transporters' to drive the translocation of solute molecules into a cell. Decades of study have shown that such sodium-coupled transporters are involved in many physiological processes, making them targets for the treatment of numerous diseases. Within the past year, crystal structures of several sodium-coupled transporters from different families have been reported, showing a remarkable structural conservation between functionally unrelated transporters. These atomic-resolution structures are revealing the mechanism of the sodium-coupled transport of solutes across cellular membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of the GltPh fold.
Figure 2: Architecture of the LeuT fold.
Figure 3: Conserved substrate- and ion-binding sites in LeuT, vSGLT and Mhp1.
Figure 4: Crystal structures of transport intermediates.
Figure 5: Comparative views of substrate-bound LeuT in the TMSout state (left) and vSGLT in the TMSin state (right).
Figure 6: Transition between outward-facing and inward-facing states in LeuT-fold transporters.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Quick, M. W. (ed.) Transmembrane Transporters (Wiley-Liss, 2002).

    Book  Google Scholar 

  2. Roux, M. J. & Supplisson, S. Neuronal and glial glycine transporters have different stoichiometries. Neuron 25, 373–383 (2000).

    Article  CAS  Google Scholar 

  3. Chakrabarti, A. C. & Deamer, D. W. Permeability of lipid bilayers to amino acids and phosphate. Biochim. Biophys. Acta 1111, 171–177 (1992).

    Article  CAS  Google Scholar 

  4. Supplisson, S. & Roux, M. J. Why glycine transporters have different stoichiometries. FEBS Lett. 529, 93–101 (2002).

    Article  CAS  Google Scholar 

  5. Sobczak, I. & Lolkema, J. S. Structural and mechanistic diversity of secondary transporters. Curr. Opin. Microbiol. 8, 161–167 (2005).

    Article  CAS  Google Scholar 

  6. Wright, E. M. & Turk, E. The sodium/glucose cotransport family SLC5. Pflügers Arch. 447, 510–518 (2004).

    Article  CAS  Google Scholar 

  7. Hebert, S. C., Mount, D. B. & Gamba, G. Molecular physiology of cation-coupled Cl− cotransport: the SLC12 family. Pflügers Arch. 447, 580–593 (2004).

    Article  CAS  Google Scholar 

  8. Sonders, M. S., Quick, M. & Javitch, J. A. How did the neurotransmitter cross the bilayer? A closer view. Curr. Opin. Neurobiol. 15, 296–304 (2005).

    Article  CAS  Google Scholar 

  9. Gamba, G. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol. Rev. 85, 423–493 (2005).

    Article  CAS  Google Scholar 

  10. Murphy, D. L., Lerner, A., Rudnick, G. & Lesch, K. P. Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol. Interv. 4, 109–123 (2004).

    Article  CAS  Google Scholar 

  11. Busch, W. & Saier, M. H. Jr The transporter classification (TC) system, 2002. Crit. Rev. Biochem. Mol. Biol. 37, 287–337 (2002).

    Article  CAS  Google Scholar 

  12. Hediger, M. A. et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflügers Arch. 447, 465–468 (2004).

    Article  CAS  Google Scholar 

  13. Saier, M. H. Jr A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev. 64, 354–411 (2000).

    Article  CAS  Google Scholar 

  14. Saier, M. H. Jr, Tran, C. V. & Barabote, R. D. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res. 34, D181–D186 (2006). References 11, 13 and 14 provide a comprehensive classification system for membrane transport proteins that includes ion channels as well as primary and secondary transporters.

    Article  CAS  Google Scholar 

  15. Mitchell, P. A general theory of membrane transport from studies of bacteria. Nature 180, 134–136 (1957).

    Article  ADS  CAS  Google Scholar 

  16. Mitchell, P. in Advances in Enzymology and Related Areas of Molecular Biology (ed. Nord, F. F.) 33–87 (Interscience, 1967).

    Google Scholar 

  17. Patlak, C. S. Contributions to the theory of active transport: II. The gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency, and measurement of energy expenditure. Bull. Math. Biophys. 19, 209–235 (1957).

    Article  MathSciNet  Google Scholar 

  18. Vidaver, G. A. Inhibition of parallel flux and augmentation of counter flux shown by transport models not involving a mobile carrier. J. Theor. Biol. 10, 301–306 (1966).

    Article  CAS  Google Scholar 

  19. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966).

    Article  ADS  CAS  Google Scholar 

  20. Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002).

    Article  ADS  CAS  Google Scholar 

  21. Huang, Y., Lemieux, M. J., Song, J., Auer, M. & Wang, D. N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli . Science 301, 616–620 (2003).

    Article  ADS  CAS  Google Scholar 

  22. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli . Science 301, 610–615 (2003).

    Article  ADS  CAS  Google Scholar 

  23. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii . Nature 431, 811–818 (2004).

    Article  ADS  CAS  Google Scholar 

  24. Hunte, C. et al. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 1197–1202 (2005).

    Article  ADS  CAS  Google Scholar 

  25. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article  ADS  CAS  Google Scholar 

  26. Screpanti, E. & Hunte, C. Discontinuous membrane helices in transport proteins and their correlation with function. J. Struct. Biol. 159, 261–267 (2007).

    Article  CAS  Google Scholar 

  27. Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321, 810–814 (2008).

    Article  ADS  CAS  Google Scholar 

  28. Weyand, S. et al. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322, 709–713 (2008).

    Article  ADS  CAS  Google Scholar 

  29. Wright, E. M., Loo, D. D. F., Hirayama, B. A. & Turk, E. Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology 19, 370–376 (2004).

    Article  CAS  Google Scholar 

  30. Chen, N. H., Reith, M. E. & Quick, M. W. Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflügers Arch. 447, 519–531 (2004).

    Article  CAS  Google Scholar 

  31. Barker, E. L., Moore, K. R., Rakhshan, F. & Blakely, R. D. Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. J. Neurosci. 19, 4705–4717 (1999).

    Article  CAS  Google Scholar 

  32. Rudnick, G. Serotonin transporters — structure and function. J. Membr. Biol. 213, 101–110 (2006).

    Article  CAS  Google Scholar 

  33. Kanner, B. I. & Zomot, E. Sodium-coupled neurotransmitter transporters. Chem. Rev. 108, 1654–1668 (2008).

    Article  CAS  Google Scholar 

  34. Ben-Yona, A. & Kanner, B. I. Transmembrane domain 8 of the γ-aminobutyric acid transporter GAT-1 lines a cytoplasmic accessibility pathway into its binding pocket. J. Biol. Chem. 284, 9727–9732 (2009).

    Article  CAS  Google Scholar 

  35. Slotboom, D. J., Lolkema, J. S. & Konings, W. N. Membrane topology of the C-terminal half of the neuronal, glial, and bacterial glutamate transporter family. J. Biol. Chem. 271, 31317–31321 (1996).

    Article  CAS  Google Scholar 

  36. Grunewald, M., Bendahan, A. & Kanner, B. I. Biotinylation of single cysteine mutants of the glutamate transporter GLT-1 from rat brain reveals its unusual topology. Neuron 21, 623–632 (1998).

    Article  CAS  Google Scholar 

  37. Seal, R. P. & Amara, S. G. A reentrant loop domain in the glutamate carrier EAAT1 participates in substrate binding and translocation. Neuron 21, 1487–1498 (1998).

    Article  CAS  Google Scholar 

  38. Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000).

    Article  ADS  CAS  Google Scholar 

  39. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).

    Article  ADS  CAS  Google Scholar 

  40. Singh, S. K., Piscitelli, C. L., Yamashita, A. & Gouaux, E. A competitive inhibitor traps LeuT in an open-to-out conformation. Science 322, 1655–1661 (2008). This paper provides a crystallographic and functional analysis of LeuT with several different ligands that correlates the occluded state to transportable ligands and identifies a tryptophan as a competitive inhibitor that traps an open-to-out conformation.

    Article  ADS  CAS  Google Scholar 

  41. Shi, L., Quick, M., Zhao, Y., Weinstein, H. & Javitch, J. A. The mechanism of a neurotransmitter:sodium symporter-inward release of Na+ and substrate is triggered by a substrate in a second binding site. Mol. Cell 30, 667–677 (2008).

    Article  CAS  Google Scholar 

  42. Celik, L., Schiott, B. & Tajkhorshid, E. Substrate binding and formation of an occluded state in the leucine transporter. Biophys. J. 94, 1600–1612 (2008).

    Article  CAS  Google Scholar 

  43. Hilger, D., Bohm, M., Hackmann, A. & Jung, H. Role of Ser-340 and Thr-341 in transmembrane domain IX of the Na+/proline transporter PutP of Escherichia coli in ligand binding and transport. J. Biol. Chem. 283, 4921–4929 (2008).

    Article  CAS  Google Scholar 

  44. De La Vieja, A., Reed, M. D., Ginter, C. S. & Carrasco, N. Amino acid residues in transmembrane segment IX of the Na+/I symporter play a role in its Na+ dependence and are critical for transport activity. J. Biol. Chem. 282, 25290–25298 (2007). The mutation of conserved serine and threonine residues in TM9 of the NIS transporter (SSS family) shows that they are involved in Na+ binding and translocation.

    Article  CAS  Google Scholar 

  45. Zhou, Y., Zomot, E. & Kanner, B. I. Identification of a lithium interaction site in the GABA transporter GAT-1. J. Biol. Chem. 281, 22092–22099 (2006).

    Article  CAS  Google Scholar 

  46. Noskov, S. Y. & Roux, B. Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms. J. Mol. Biol. 377, 804–818 (2008).

    Article  CAS  Google Scholar 

  47. Caplan, D. A., Subbotina, J. O. & Noskov, S. Y. Molecular mechanism of ion-ion and ion-substrate coupling in the Na+-dependent leucine transporter LeuT. Biophys. J. 95, 4613–4621 (2008).

    Article  ADS  CAS  Google Scholar 

  48. Talvenheimo, J., Fishkes, H., Nelson, P. J. & Rudnick, G. The serotonin transporter-imipramine “receptor”. J. Biol. Chem. 258, 6115–6119 (1983).

    CAS  PubMed  Google Scholar 

  49. Gu, H. H., Wall, S. & Rudnick, G. Ion coupling stoichiometry for the norepinephrine transporter in membrane vesicles from stably transfected cells. J. Biol. Chem. 271, 6911–6916 (1996).

    Article  CAS  Google Scholar 

  50. Keynan, S. & Kanner, B. I. γ-Aminobutyric acid transport in reconstituted preparations from rat brain: coupled sodium and chloride fluxes. Biochemistry 27, 12–17 (1988).

    Article  CAS  Google Scholar 

  51. Diez-Sampedro, A., Eskandari, S., Wright, E. M. & Hirayama, B. A. Na+-to-sugar stoichiometry of SGLT3. Am. J. Physiol. Renal Physiol. 280, F278–F282 (2001).

    Article  Google Scholar 

  52. Mackenzie, B., Loo, D. D. F. & Wright, E. M. Relationships between Na+/glucose cotransporter (SGLT1) currents and fluxes. J. Membr. Biol. 162, 101–106 (1998).

    Article  CAS  Google Scholar 

  53. Eskandari, S. et al. Thyroid Na+/I- symporter. Mechanism, stoichiometry, and specificity. J. Biol. Chem. 272, 27230–27238 (1997).

    Article  CAS  Google Scholar 

  54. Forrest, L. R., Tavoulari, S., Zhang, Y. W., Rudnick, G. & Honig, G. Identification of a chloride ion binding site in Na+/Cl− -dependent transporters. Proc. Natl Acad. Sci. USA 104, 12761–12766 (2007).

    Article  ADS  CAS  Google Scholar 

  55. Zomot, E. et al. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 449, 726–730 (2007).

    Article  ADS  CAS  Google Scholar 

  56. Singh, S., Yamashita, A. & Gouaux, E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 448, 952–956 (2007). This paper presents a structural concept for the non-competitive inhibition of NSS transporters by tricyclic antidepressants.

    Article  ADS  CAS  Google Scholar 

  57. Boudker, O., Ryan, R., Yernool, D., Shimamoto, K. & Gouaux, E. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445, 387–393 (2007).

    Article  ADS  CAS  Google Scholar 

  58. Kavanaugh, M. P., Bendahan, A., Zerangue, N., Zhang, Y. & Kanner, B. I. Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange. J. Biol. Chem. 272, 1703–1708 (1997).

    Article  CAS  Google Scholar 

  59. Keyes, S. R. & Rudnick, G. Coupling of transmembrane proton gradients to platelet serotonin transport. J. Biol. Chem. 257, 1172–1176 (1982).

    CAS  PubMed  Google Scholar 

  60. Forrest, L. R. et al. Mechanism for alternating access in neurotransmitter transporters. Proc. Natl Acad. Sci. USA 105, 10338–10343 (2008). This paper proposes a model for an inward-facing conformation of LeuT based on the structure of outward-facing LeuT 2013>Leu and the inverted structural pseudo-symmetry.

    Article  ADS  CAS  Google Scholar 

  61. Jacobs, M. T., Zhang, Y. W., Campbell, S. D. & Rudnick, G. Ibogaine, a noncompetitive inhibitor of serotonin transport, acts by stabilizing the cytoplasm-facing state of the transporter. J. Biol. Chem. 282, 29441–29447 (2007).

    Article  CAS  Google Scholar 

  62. Zhang, Y.-W. & Rudnick, G. The cytoplasmic substrate permeation pathway of serotonin transporter. J. Biol. Chem. 281, 36213–36220 (2006).

    Article  CAS  Google Scholar 

  63. Zhang, Y. W. & Rudnick, G. Cysteine-scanning mutagenesis of serotonin transporter intracellular loop 2 suggests an α-helical conformation. J. Biol. Chem. 280, 30807–30813 (2005).

    Article  CAS  Google Scholar 

  64. Zhou, Z. et al. LeuT-desipramine structure reveals how antidepressants block neurotransmitter uptake. Science 317, 1390–1393 (2007).

    Article  ADS  CAS  Google Scholar 

  65. Apparsundaram, S., Stockdale, D. J., Henningsen, R. A., Milla, M. E. & Martin, R. S. Antidepressants targeting the serotonin reuptake transporter act via a competitive mechanism. J. Pharmacol. Exp. Ther. 327, 982–990 (2008).

    Article  CAS  Google Scholar 

  66. Hirayama, B. A., Diez-Sampedro, A. & Wright, E. M. Common mechanisms of inhibition for the Na+/glucose (hSGLT1) and Na+/Cl−/GABA (hGAT1) cotransporters. Br. J. Pharmacol. 134, 484–495 (2001). This paper demonstrates a common principle for inhibition between two functionally unrelated families that hints at the underlying structural conservation.

    Article  CAS  Google Scholar 

  67. Hayward, S. & Berendsen, H. J. Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme. Proteins 30, 144–154 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health. E.G. is an investigator with the Howard Hughes Medical Institute. We thank R. Hibbs, K. Hollenstein, H. Owen, S. Singh and A. Sobolevsky for helpful comments and L. Vaskalis for assistance with the figures.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to E.G. (gouauxe@ohsu.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamurthy, H., Piscitelli, C. & Gouaux, E. Unlocking the molecular secrets of sodium-coupled transporters. Nature 459, 347–355 (2009). https://doi.org/10.1038/nature08143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08143

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing