Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ubiquitin signalling in the NF-κB pathway

Abstract

The transcription factor NF-κB (nuclear factor kappa enhancer binding protein) controls many processes, including immunity, inflammation and apoptosis. Ubiquitination regulates at least three steps in the NF-κB pathway: degradation of IκB (inhibitor of NF-κB), processing of NF-κB precursors, and activation of the IκB kinase (IKK). Recent studies have revealed several enzymes involved in the ubiquitination and deubiquitination of signalling proteins that mediate IKK activation through a degradation-independent mechanism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The NF-κB signalling pathways.
Figure 2: A model for the processing of p100 by the proteasome.
Figure 3: A model for IKK activation by TRAF6 ubiquitination.
Figure 4: A central role for ubiquitin in multiple signalling pathways.

Similar content being viewed by others

References

  1. Hershko, A., Ciechanover, A. & Rose, I. A. Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP. Proc. Natl Acad. Sci USA 76, 3107–3110 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ciechanover, A., Heller, H., Elias, S., Haas, A. L. & Hershko, A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc. Natl Acad. Sci. USA 77, 1365–1368 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sen, R. & Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705–716 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Sen, R. & Baltimore, D. Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47, 921–928 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Baeuerle, P. A. & Baltimore, D. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-κB transcription factor. Cell 53, 211–217 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78, 773–785 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, Z. et al. Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin-proteasome pathway. Genes Dev. 9, 1586–97 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, Z. & Maniatis, T. Role of the Ubiquitin-Proteasome Pathway in NF-κB Activation. 303–22 (Plenum Press, New York, 1998).

    Google Scholar 

  9. Chen, Z. J., Parent, L. & Maniatis, T. Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell 84, 853–862 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Deng, L. & Chen, Z. Role of Ubiquitin in NF-κB Signaling. 139–160 (Kluwer, Boston, 2003).

    Google Scholar 

  13. Ben-Neriah, Y. Regulatory functions of ubiquitination in the immune system. Nature Immunol. 3, 20–26 (2002).

    Article  CAS  Google Scholar 

  14. Li, Q. & Verma, I. M. NF-κB regulation in the immune system. Nature Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  Google Scholar 

  15. Pomerantz, J. L. & Baltimore, D. Two pathways to NF-κB. Mol. Cell 10, 693–695 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Xiao, G., Harhaj, E. W. & Sun, S. C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell 7, 401–409 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Pickart, C. M. Back to the future with ubiquitin. Cell 116, 181–190 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nature Biotechnol. 21, 921–926 (2003).

    Article  CAS  Google Scholar 

  21. Alkalay, I. et al. Stimulation-dependent IκBα phosphorylation marks the NF-κB inhibitor for degradation via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA 92, 10599–10603 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Margottin, F. et al. A novel human WD protein, h-βTrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol. Cell 1, 565–574 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Winston, J. T. et al. The SCFβ–TRCP–ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yaron, A. et al. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396, 590–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Spencer, E., Jiang, J. & Chen, Z. J. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β–TrCP. Genes Dev. 13, 284–294 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Guardavaccaro, D. et al. Control of meiotic and mitotic progression by the F box protein β-Trcp1 in vivo. Dev. Cell 4, 799–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Lin, L., DeMartino, G. N. & Greene, W. C. Cotranslational biogenesis of NF-κB p50 by the 26S proteasome. Cell 92, 819–828 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Ciechanover, A. et al. Mechanisms of ubiquitin-mediated, limited processing of the NF-κB1 precursor protein p105. Biochimie 83, 341–349 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Amir, R. E., Haecker, H., Karin, M. & Ciechanover, A. Mechanism of processing of the NF-κB2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCF(β-TrCP) ubiquitin ligase. Oncogene 23, 2540–2547 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Fong, A. & Sun, S. C. Genetic evidence for the essential role of β-transducin repeat-containing protein in the inducible processing of NF-κB2/p100. J. Biol. Chem. 277, 22111–22114 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Rape, M. & Jentsch, S. Productive RUPture: activation of transcription factors by proteasomal processing. Biochim. Biophy.s Acta 1695, 209–213 (2004).

    Article  CAS  Google Scholar 

  33. Lin, L. & Ghosh, S. A glycine-rich region in NF-κB p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell. Biol. 16, 2248–2254 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chung, J. Y., Park, Y. C., Ye, H. & Wu, H. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell Sci. 115, 679–688 (2002).

    CAS  PubMed  Google Scholar 

  35. Chen, G. & Goeddel, D. V. TNF-R1 signaling: a beautiful pathway. Science 296, 1634–1635 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015–1024 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Naito, A. et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4, 353–362 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Ninomiya-Tsuji, J. et al. The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252–256 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Kanayama, A. et al. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol Cell 15, 535–548 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Varadan, R. et al. Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J. Biol. Chem. 279, 7055–7063 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Shi, C. S. & Kehrl, J. H. Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J. Biol. Chem. 278, 15429–15434 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Xia, Z. P. & Chen, Z. J. TRAF2: a double-edged sword? Sci. STKE 2005, pe7 (2005).

    PubMed  Google Scholar 

  44. Habelhah, H. et al. Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-κB. EMBO J. 23, 322–332 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yeh, W. C. et al. Early lethality, functional NF-κB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7, 715–725 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Tada, K. et al. Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-κB activation and protection from cell death. J. Biol. Chem. 276, 36530–36534 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, T. H., Shank, J., Cusson, N. & Kelliher, M. A. The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IκB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J. Biol. Chem. 279, 33185–33191 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, S. Q., Kovalenko, A., Cantarella, G. & Wallach, D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKγ) upon receptor stimulation. Immunity 12, 301–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Legler, D. F., Micheau, O., Doucey, M. A., Tschopp, J. & Bron, C. Recruitment of TNF receptor 1 to lipid rafts is essential for TNFα-mediated NF-κB activation. Immunity 18, 655–664 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Hayden, M. S. & Ghosh, S. Signaling to NF-κB. Genes Dev. 18, 2195–2224 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Ninomiya-Tsuji, J. et al. A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J. Biol. Chem. 278, 18485–18490 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Takaesu, G. et al. TAK1 is critical for IκB kinase-mediated activation of the NF-κB pathway. J. Mol. Biol. 326, 105–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev. 15, 1900–1912 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Silverman, N. et al. Immune activation of NF-κB and JNK requires Drosophila TAK1. J. Biol. Chem. 278, 48928–48934 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, W., White, M. A. & Cobb, M. H. Stimulus-specific requirements for MAP3 kinases in activating the JNK pathway. J. Biol. Chem. 277, 49105–49110 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Sanjo, H. et al. TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Mol. Cell. Biol. 23, 1231–1238 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Komatsu, Y. et al. Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. Mech. Dev. 119, 239–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Shibuya, H. et al. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 272, 1179–1182 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Shibuya, H. et al. Role of TAK1 and TAB1 in BMP signaling in early Xenopus development. EMBO J. 17, 1019–1028 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270, 2008–2011 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Vadlamudi, R. K., Joung, I., Strominger, J. L. & Shin, J. p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J. Biol. Chem. 271, 20235–20237 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Sanz, L., Sanchez, P., Lallena, M. J., Diaz-Meco, M. T. & Moscat, J. The interaction of p62 with RIP links the atypical PKCs to NF-κB activation. EMBO J. 18, 3044–3053 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sanz, L., Diaz-Meco, M. T., Nakano, H. & Moscat, J. The atypical PKC-interacting protein p62 channels NF-κB activation by the IL-1–TRAF6 pathway. EMBO J. 19, 1576–1586 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Duran, A. et al. The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev. Cell 6, 303–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Huang, Q. et al. Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nature Immunol. 5, 98–103 (2004).

    Article  CAS  Google Scholar 

  66. Yang, J. et al. The essential role of MEKK3 in TNF-induced NF-κB activation. Nature Immunol. 2, 620–624 (2001).

    Article  CAS  Google Scholar 

  67. Thome, M. & Tschopp, J. TCR-induced NF-κB activation: a crucial role for Carma1, Bcl10 and MALT1. Trends Immunol. 24, 419–424 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. van Oers, N. S. & Chen, Z. J. Cell biology. Kinasing and clipping down the NF-κB trail. Science 308, 65–66 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Zhou, H. et al. Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature 427, 167–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Sun, L., Deng, L., Ea, C. K., Xia, Z. P. & Chen, Z. J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115, 565–576 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Inohara, N. & Nunez, G. NODs: intracellular proteins involved in inflammation and apoptosis. Nature Rev. Immunol. 3, 371–382 (2003).

    Article  CAS  Google Scholar 

  73. Abbott, D. W., Wilkins, A., Asara, J. M. & Cantley, L. C. The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr. Biol. 14, 2217–2227 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Maeda, S. et al. Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1β processing. Science 307, 734–738 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Kawai, T. et al. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunol. 5, 1061–8 (2004).

    Article  CAS  Google Scholar 

  76. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793–796 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Reiley, W., Zhang, M. & Sun, S. C. Negative regulation of JNK signaling by the tumor suppressor CYLD. J. Biol. Chem. 279, 55161–55167 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Boone, D. L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nature Immunol. 5, 1052–1060 (2004).

    Article  CAS  Google Scholar 

  81. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Evans, P. C. et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem. J. 378, 727–734 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, E. G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, Y. Y., Li, L., Han, K. J., Zhai, Z. & Shu, H. B. A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-κB and ISRE and IFN-β promoter. FEBS Lett. 576, 86–90 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank A. Tizenor for excellent graphic illutration. Research in my laboratory is supported by grants from NIH (R01-GM63692), the Welch Foundation (I1389) and the American Cancer Society (RSG0219501TBE). Z.J.C is a Leukemia and Lymphoma Society Scholar and a Burroughs Wellcome Fund Investigator in Pathogenesis of Infectious Diseases.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary table S1 (PDF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z. Ubiquitin signalling in the NF-κB pathway. Nat Cell Biol 7, 758–765 (2005). https://doi.org/10.1038/ncb0805-758

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0805-758

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing