Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors

Abstract

Signalling by G proteins is controlled by the regulator of G-protein signalling (RGS) proteins that accelerate the GTPase activity of Gα subunits and act in a G-protein-coupled receptor (GPCR)-specific manner1,2,3,4. The conserved RGS domain accelerates the G subunit GTPase activity5, whereas the variable amino-terminal domain participates in GPCR recognition6. How receptor recognition is achieved is not known. Here, we show that the scaffold protein spinophilin (SPL)7, which binds the third intracellualar loop (3iL) of several GPCRs8,9,10, binds the N-terminal domain of RGS2. SPL also binds RGS1, RGS4, RGS16 and GAIP. When expressed in Xenopus laevis oocytes, SPL markedly increased inhibition of α-adrenergic receptor (αAR) Ca2+ signalling by RGS2. Notably, the constitutively active mutant αARA293E (the mutation being in the 3iL) did not bind SPL and was relatively resistant to inhibition by RGS2. Use of βAR–αAR chimaeras identified the 288REKKAA293 sequence as essential for the binding of SPL and inhibition of Ca2+ signalling by RGS2. Furthermore, αAR-evoked Ca2+ signalling is less sensitive to inhibition by SPL in rgs2−/− cells and less sensitive to inhibition by RGS2 in spl−/− cells. These findings provide a general mechanism by which RGS proteins recognize GPCRs to confer signalling specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of RGS2 with spinophilin (SPL).
Figure 2: Effect of SPL and RGS2 on Ca2+ signalling by WT-αAR and αARA293E.
Figure 3: The αAR 3iL sequence 288REKKAA293 mediates interaction with SPL.
Figure 4: Role of SPL in α-adrenergic receptor Ca2+signaling in native cells.
Figure 5: Binding of RGS2 to SPL and the αAR 3iL.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Luo, X., Popov, S., Bera, A. K., Wilkie, T. M. & Muallem, S. RGS proteins provide biochemical control of agonist-evoked [Ca2+]i oscillations. Mol. Cell 7, 651–660 (2001).

    Article  CAS  Google Scholar 

  2. Zheng, B., De Vries, L. & Gist Farquhar, M. Divergence of RGS proteins: evidence for the existence of six mammalian RGS subfamilies. Trends Biochem. Sci. 24, 411–414 (1999).

    Article  CAS  Google Scholar 

  3. Ishii, M. & Kurachi, Y. Physiological actions of regulators of G-protein signaling (RGS) proteins. Life Sci. 74, 163–171 (2003).

    Article  CAS  Google Scholar 

  4. Xu, X. et al. RGS proteins determine signaling specificity of Gq-coupled receptors. J. Biol. Chem. 274, 3549–3556 (1999).

    Article  CAS  Google Scholar 

  5. Popov, S., Yu, K., Kozasa, T. & Wilkie, T. M. The regulators of G protein signaling (RGS) domains of RGS4, RGS10, and GAIP retain GTPase activating protein activity in vitro. Proc. Natl Acad. Sci. USA 94, 7216–7220 (1997).

    Article  CAS  Google Scholar 

  6. Zeng, W. et al. The N-terminal domain of RGS4 confers receptor-selective inhibition of G protein signaling. J. Biol.Chem. 273, 34687–34690 (1998).

    Article  CAS  Google Scholar 

  7. Allen, P. B., Hsieh-Wilson, L., Yan, Z., Feng, J., Ouimet, C. C. & Greengard, P. Control of protein phosphatase I in the dendrite. Biochem. Soc. Trans. 27, 543–546 (1999).

    Article  CAS  Google Scholar 

  8. Smith, F. D., Oxford, G. S. & Milgram, S. L. Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J. Biol. Chem. 274, 19894–19900 (1999).

    Article  CAS  Google Scholar 

  9. Richman, J. G., Brady, A. E., Wang, Q., Hensel, J. L., Colbran, R. J. & Limbird, L. E. Agonist-regulated interaction between alpha2-adrenergic receptors and spinophilin. J. Biol. Chem. 276, 15003–15008 (2001).

    Article  CAS  Google Scholar 

  10. Brady, A. E., Wang, Q., Colbran, R. J., Allen, P. B., Greengard, P. & Limbird, L. E. J. Biol. Chem. 278, 32405–32412 (2003).

    Article  CAS  Google Scholar 

  11. Scheer, A. & Cotecchia, S. J. Constitutively active G protein-coupled receptors: potential mechanisms of receptor activation. Recept. Signal. Transduct. Res. 17, 57–73 (1997).

    Article  CAS  Google Scholar 

  12. Wang, Q. et al. Spinophilin is a functional antagonist of arrestin in vitro and in vivo. Science 304, 1940–1944 (2004).

    Article  CAS  Google Scholar 

  13. de la Pena, P., del Camino, D., Pardo, L.A., Dominguez, P. & Barros, F. Gs couples thyrotropin-releasing hormone receptors expressed in Xenopus oocytes to phospholipase C. J. Biol. Chem. 270, 3554–3559 (1995).

    Article  CAS  Google Scholar 

  14. Gilchrist, A., Li, A. & Hamm, H. E. G alpha COOH-terminal minigene vectors dissect heterotrimeric G protein signaling. Sci. STKE 5 (118), PL1 (2002).

    Google Scholar 

  15. Cotecchia, S., Ostrowski, J., Kjelsberg, M. A., Caron, M. G. & Lefkowitz, R. J. Discrete amino acid sequences of the alpha 1-adrenergic receptor determine the selectivity of coupling to phosphatidylinositol hydrolysis. J. Biol. Chem. 267, 1633–1639 (1992).

    CAS  PubMed  Google Scholar 

  16. Oliveira-Dos-Santos, A. J. et al. Regulation of T cell activation, anxiety, and male aggression by RGS2. Proc. Natl Acad. Sci. USA 97, 12272–12277 (2000).

    Article  CAS  Google Scholar 

  17. Feng, J. et al. Spinophilin regulates the formation and function of dendritic spines. Proc. Natl Acad. Sci. USA 97, 9287–9292 (2000).

    Article  CAS  Google Scholar 

  18. Xu, X., Diaz, J., Zhao, H. & Muallem, S. Characterization, localization and axial distribution of Ca2+ signalling receptors in the rat submandibular salivary gland ducts. J. Physiol. 491, 647–662 (1996).

    Article  CAS  Google Scholar 

  19. Bernstein, L. S. et al. RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate Gq/11α signaling. J. Biol. Chem. 279, 21248–21256 (2004).

    Article  CAS  Google Scholar 

  20. Ko, S. B. H. et al. A molecular mechanism for aberrant CFTR-dependent HCO3 transport in cystic fibrosis. EMBO J. 21, 5662–5672 (2002).

    Article  CAS  Google Scholar 

  21. Zeng, W., Lee, M. G. & Muallem, S. Membrane-specific regulation of Cl channels by purinergic receptors in rat submandibular gland acinar and duct cells. J. Biol. Chem. 272, 32956–32965 (1997).

    Article  CAS  Google Scholar 

  22. Zeng, W., Xu, X. & Muallem, S. Gβγ transduces [Ca2+]i oscillations and Gα a sustained response during stimulation of pancreatic acinar cells with [Ca2+]i-mobilizing agonists. J. Biol. Chem. 271, 18520–18526 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Südhof, UT Southwestern, Dallas, TX, for the brain library and S. Cotecchia, Institute of Pharm, Lausanne, Switzerland, for clones. This work was supported by the National Institutes of Health grants DE12309 and DK38938, the Peter Jay Sharp Foundation and the F.M. Kirby Foundation, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shmuel Muallem.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zeng, W., Soyombo, A. et al. Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors. Nat Cell Biol 7, 405–411 (2005). https://doi.org/10.1038/ncb1237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing